165 research outputs found
From Violence to Salvation: Toward a Method of Cult Study With the Branch Davidians and Aum Shinrikyo
Since the People\u27s Temple massacre in Jonestown, Guyana in 1978 that resulted in at least 900 dead by either suicide or murder, cults have occupied a ominous position in the consciousness of popular culture and academic study, ranging from accusations of brainwashing by psychopathic leaders to stereotypical communes comprised of the dysfunctional dregs of society to simple dismissal by academics concerned with the serious study of religion. Cults in contemporary popular culture are a distinctly \u27\u27unpopular phenomena, to borrow David Bromley\u27s word. Certainly, the word cult itself would seem to conjure up notions of mass suicide and brainwashing. Yet how accurate is such a generalization and how do such generalizations temper the study of cults? I would suggest that cults study is biased by this unpopularity such that the development of a new methodology is imperative to understanding cults and ensuring that further tragedies can be prevented
Scale development and validation of Transaction Cost Economics typology for contracts: A systems thinking approach
A variety of contract typologies that exist in the literature are helpful in the exploration of different approaches in contractual relations, but only when measured with the right instruments. Although Transaction Cost Economics (TCE) has a distinct, high-level, and abstract typology for contracts, it still lacks a measurement scale. In this paper, a measurement scale for the TCE contract typology (classical, neo-classical, and relational contracts) was developed and validated, using systems thinking approach and experimental design to contribute to the empirical tests of TCE within the contracting realm. First, the antecedents of contract selection within the TCE literature were analyzed using the systemigram technique to visualize and parse out complex relationships that lead to contract selection. The analysis of the TCE Systemigram helped the development of the scale and revealed the need to revisit the risk neutrality assumption embedded in TCE. Second, a measurement scale for the TCE contract typology (classical, neo-classical, and relational contracts) was developed adhering to the original texts of seminal papers and reviews from the TCE literature. Third, the 14-item measurement scale was validated using a series of three vignette-based experimental studies
Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: Roles of endothelial nitric oxide synthase and endothelial progenitor cells
ObjectiveWe sought to directly compare the effects of type 1 and type 2 diabetes on postischemic neovascularization and evaluate the mechanisms underlying differences between these groups. We tested the hypothesis that type 2 diabetic mice have a greater reduction in endothelial nitric oxide synthase (eNOS) expression, a greater increase in oxidative stress, and reduced arteriogenesis and angiogenesis, resulting in less complete blood flow recovery than type 1 diabetic mice after induction of hind limb ischemia.MethodsHind limb ischemia was generated by femoral artery excision in streptozotocin-treated mice (model of type 1 diabetes), in Leprdb/db mice (model of type 2 diabetes), and in control (C57BL/6) mice. Dependent variables included eNOS expression and markers of arteriogenesis, angiogenesis, and oxidative stress.ResultsPostischemia recovery of hind limb perfusion was significantly less in type 2 than in type 1 diabetic mice; however, neither group demonstrated a significant increase in collateral artery diameter or collateral artery angioscore in the ischemic hind limb. The capillary/myofiber ratio in the gastrocnemius muscle decreased in response to ischemia in control or type 1 diabetic mice but remained the same in type 2 diabetic mice. Gastrocnemius muscle eNOS expression was lower in type 1 and 2 diabetic mice than in control mice. This expression decreased after induction of ischemia in type 2 but not in type 1 diabetic mice. The percentage of endothelial progenitor cells (EPC) in the peripheral blood failed to increase in either diabetic group after induction of ischemia, whereas this variable significantly increased in the control group in response to ischemia. EPC eNOS expression decreased after induction of ischemia in type 1 but not in type 2 diabetic mice. EPC nitrotyrosine accumulation increased after induction of ischemia in type 2 but not in type 1 diabetic mice. EPC migration in response to vascular endothelial growth factor was reduced in type 1 and type 2 diabetic mice vs control mice. EPC incorporation into tubular structures was less effective in type 2 diabetic mice. Extensive fatty infiltration was present in ischemic muscle of type 2 but not in type 1 diabetic mice.ConclusionType 2 diabetic mice displayed a significantly less effective response to hind limb ischemia than type 1 diabetic mice.Clinical RelevanceDiabetes is important in the pathogenesis of peripheral artery disease. The present study demonstrates that the vascular response to acute hind limb ischemia is dependent on the type of diabetes present. Type 2 diabetic mice (Leprdb/db) demonstrated significantly less effective blood flow recovery than type 1 diabetic mice (streptozotocin-induced). Moreover, the differences between diabetic groups appeared contingent, at least in part, on differences in endothelial nitric oxide, oxidant stress, and endothelial progenitor cell function between the two diabetic groups. Although direct extrapolation of animal data to the human experience must be made with caution, these findings indicate that the type of diabetes present, and not just the presence of diabetes per se, may be important in the initiation of progression of peripheral artery disease
"Jumping Jack": Genomic Microsatellites Underscore the Distinctiveness of Closely Related Pseudoperonospora cubensis and Pseudoperonospora humuli and Provide New Insights Into Their Evolutionary Past
Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex
GSK3β Regulates Differentiation and Growth Arrest in Glioblastoma
Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1, which is required for neural stem cell self-renewal and also controls anti-oxidant defense in neurons, is upregulated in several cancers, including medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly, expression of glycogen synthase kinase 3 beta (GSK3β), which was found to be consistently expressed in primary GBM, also declined. This suggests a functional link between Bmi1 and GSK3β. Interference with GSK3β activity by siRNA, the specific inhibitor SB216763, or lithium chloride (LiCl) induced tumor cell differentiation. In addition, tumor cell apoptosis was enhanced, the formation of neurospheres was impaired, and clonogenicity reduced in a dose-dependent manner. GBM cell lines consist mainly of CD133-negative (CD133-) cells. Interestingly, ex vivo cells from primary tumor biopsies allowed the identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3β. Drugs that inhibit GSK3, including the psychiatric drug LiCl, may deplete the GBM stem cell reservoir independently of CD133 status
Mass balance of the Greenland Ice Sheet from 1992 to 2018
In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate
Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.
Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD
- …