377 research outputs found

    Power and Negotiation in a University/Community Partnership Serving Jewish Teen Girls

    Get PDF
    University/community partnerships involve collaborative work with great potential and risk. This work can allow for productive exchanges that improve the quality of programs and enable broader dissemination of innovative ideas and practices grounded in feminist and social justice ideals. However, institutional demands and individual commitments introduce complications. This paper examines the complex power dynamics that emerge from cross-institutional partnering and program delivery in the context of a feminist education and youth-led participatory action research program for Jewish teen girls. Specifically, we examine the previously under-studied topic of university/community collaboration in which the participating institutions are similarly situated in structures of power. We explore how power dynamics and the partners’ shared and differential strategic goals were negotiated within a context of distinct institutional mandates, with a focus on the pressures of time, funding, and developing youth participatory action research with relatively privileged youth. We discuss implications and strategies for navigating complex university/community engagements that enable balanced, long-term, and sustained partnerships in which mutual interests are served

    Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Get PDF
    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space

    Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Get PDF
    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space

    An increasing role for solvent emissions and implications for future measurements of volatile organic compounds : Solvent emissions of VOCs

    Get PDF
    Volatile organic compounds (VOCs) are a broad class of air pollutants which act as precursors to tropospheric ozone and secondary organic aerosols. Total UK emissions of anthropogenic VOCs peaked in 1990 at 2,840 kt yr -1 and then declined to approximately 810 kt yr -1 in 2017 with large reductions in road transport and fugitive fuel emissions. The atmospheric concentrations of many non-methane hydrocarbons (NMHC) in the UK have been observed to fall over this period in broadly similar proportions. The relative contribution to emissions from solvents and industrial processes is estimated to have increased from approximately 35% in 1990 to approximately 63% in 2017. In 1992, UK national monitoring quantified 19 of the 20 most abundant individual anthropogenic VOCs emitted (all were NMHCs), but by 2017 monitoring captured only 13 of the top 20 emitted VOCs. Ethanol is now estimated to be the most important VOC emitted by mass (in 2017 approx. 136 kt yr -1 and approx. 16.8% of total emissions) followed by n-butane (52.4 kt yr -1) and methanol (33.2 kt yr -1). Alcohols have grown in significance representing approximately 10% of emissions in 1990 rising to approximately 30% in 2017. The increased role of solvent emissions should now be reflected in European monitoring strategies to verify total VOC emission reduction obligations in the National Emissions Ceiling Directive. Adding ethanol, methanol, formaldehyde, acetone, 2-butanone and 2-propanol to the existing NMHC measurements would provide full coverage of the 20 most significant VOCs emitted on an annual mass basis. This article is part of a discussion meeting issue 'Air quality, past present and future'

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino

    Megacity and local contributions to regional air pollution : An aircraft case study over London

    Get PDF
    In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time

    A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study.

    Get PDF
    BACKGROUND: Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs). We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications. METHODS AND FINDINGS: From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS) dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous); gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC) of 0.768 (95% CI 0.735-0.801) with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658-0.768). A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability. CONCLUSIONS: The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be used in LMICs to identify women who would benefit most from interventions such as magnesium sulphate, antihypertensives, or transportation to a higher level of care

    Sources of non-methane hydrocarbons in surface air in Delhi, India

    Get PDF
    Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2–C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35–1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi

    Bovine Tuberculosis in a Nebraska Herd of Farmed Elk and Fallow Deer: A Failure of the Tuberculin Skin Test and Opportunities for Serodiagnosis

    Get PDF
    In 2009, Mycobacterium bovis infection was detected in a herd of 60 elk (Cervus elaphus) and 50 fallow deer (Dama dama) in Nebraska, USA. Upon depopulation of the herd, the prevalence of bovine tuberculosis (TB) was estimated at ∼71–75%, based upon histopathology and culture results. Particularly with elk, gross lesions were often severe and extensive. One year ago, the majority of the elk had been tested for TB by single cervical test (SCT), and all were negative. After initial detection of a tuberculous elk in this herd, 42 of the 59 elk were tested by SCT. Of the 42 SCT-tested elk, 28 were TB-infected with only 3/28 reacting upon SCT. After SCT, serum samples were collected from the infected elk and fallow deer from this herd at necropsy and tested by three antibody detection methods including multiantigen print immunoassay, cervidTB STAT-PAK, and dual path platform VetTB (DPP). Serologic test sensitivity ranged from 79 to 97% depending on the test format and host species. Together, these findings demonstrate the opportunities for use of serodiagnosis in the rapid detection of TB in elk and fallow deer

    Long-term NOx measurements in the remote marine tropical troposphere

    Get PDF
    Atmospheric nitrogen oxides (NO + NO2 = NOx) have been measured at the Cape Verde Atmospheric Observatory (CVAO) in the tropical Atlantic (16∘51′ N, 24∘52′ W) since October 2006. These measurements represent a unique time series of NOx in the background remote troposphere. Nitrogen dioxide (NO2) is measured via photolytic conversion to nitric oxide (NO) by ultraviolet light-emitting diode arrays followed by chemiluminescence detection. Since the measurements began, a blue light converter (BLC) has been used for NO2 photolysis, with a maximum spectral output of 395 nm from 2006 to 2015 and of 385 nm from 2015 onwards. The original BLC used was constructed with a Teflon-like material and appeared to cause an overestimation of NO2 when illuminated. To avoid such interferences, a new additional photolytic converter (PLC) with a quartz photolysis cell (maximum spectral output also 385 nm) was implemented in March 2017. Once corrections are made for the NO2 artefact from the original BLC, the two NO2 converters are shown to give comparable NO2 mixing ratios (BLC = 0.99 × PLC + 0.7 ppt, linear least-squares regression), giving confidence in the quantitative measurement of NOx at very low levels. Data analysis methods for the NOx measurements made at CVAO have been developed and applied to the entire time series to produce an internally consistent and high-quality long-term data set. NO has a clear diurnal pattern with a maximum mixing ratio of 2–10 ppt during the day depending on the season and ∼ 0 ppt during the night. NO2 shows a fairly flat diurnal signal, although a small increase in daytime NOx is evident in some months. Monthly average mixing ratios of NO2 vary between 5 and 30 ppt depending on the season. Clear seasonal trends in NO and NO2 levels can be observed with a maximum in autumn and winter and a minimum in spring and summer.</p
    corecore