86 research outputs found
In-vehicle nitrogen dioxide concentrations in road tunnels
There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08–0.36), suggesting that vehicle occupants can significantly lower their exposure to NO in tunnels by switching recirculation on. The highest mean I/O ratios for NO were measured in older vehicles (0.35–0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO
LFI 30 and 44 GHz receivers Back-End Modules
The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency
Instrument are broadband receivers (20% relative bandwidth) working at room
temperature. The signals coming from the Front End Module are amplified, band
pass filtered and finally converted to DC by a detector diode. Each receiver
has two identical branches following the differential scheme of the Planck
radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs
P-HEMT devices, microstrip filters and Schottky diode detectors. Their
manufacturing development has included elegant breadboard prototypes and
finally qualification and flight model units. Electrical, mechanical and
environmental tests were carried out for the characterization and verification
of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules
of Planck-LFI radiometers is given, with details of the tests done to determine
their electrical and environmental performances. The electrical performances of
the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth,
equivalent noise temperature, 1/f noise and linearity are presented
Thermal susceptibility of the Planck-LFI receivers
This paper is part of the Prelaunch status LFI papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jinst .
This paper describes the impact of the Planck Low Frequency Instrument front
end physical temperature fluctuations on the output signal. The origin of
thermal instabilities in the instrument are discussed, and an analytical model
of their propagation and impact on the receivers signal is described. The
experimental test setup dedicated to evaluate these effects during the
instrument ground calibration is reported together with data analysis methods.
Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is
not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The definitive publisher authenticated
version is available online at 10.1088/1748-0221/4/12/T1201
The linearity response of the Planck-LFI flight model receivers
In this paper we discuss the linearity response of the Planck-LFI receivers,
with particular reference to signal compression measured on the 30 and 44 GHz
channels. In the article we discuss the various sources of compression and
present a model that accurately describes data measured during tests performed
with individual radiomeric chains. After discussing test results we present the
best parameter set representing the receiver response and discuss the impact of
non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an
author-created, un-copyedited version of an article accepted for publication
in JINST. IOP Publishing Ltd is not responsible for any errors or omissions
in this version of the manuscript or any version derived from it. The
definitive publisher authenticated version is available online at
10.1088/1748-0221/4/12/T12011
Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument
We give a description of the design, construction and testing of the 30 and
44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the
Planck mission to be launched in 2009. The scientific requirements of the
mission determine the performance parameters to be met by the FEMs, including
their linear polarization characteristics.
The FEM design is that of a differential pseudo-correlation radiometer in
which the signal from the sky is compared with a 4-K blackbody load. The Low
Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High
Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel
phase-switch design which gives excellent amplitude and phase match across the
band.
The noise temperature requirements are met within the measurement errors at
the two frequencies. For the most sensitive LNAs, the noise temperature at the
band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively.
For some of the FEMs, the noise temperature is still falling as the ambient
temperature is reduced to 20 K. Stability tests of the FEMs, including a
measurement of the 1/f knee frequency, also meet mission requirements.
The 30 and 44 GHz FEMs have met or bettered the mission requirements in all
critical aspects. The most sensitive LNAs have reached new limits of noise
temperature for HEMTs at their band centres. The FEMs have well-defined linear
polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical
papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
Planck-LFI radiometers tuning
"This paper is part of the Prelaunch status LFI papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jinst"
This paper describes the Planck Low Frequency Instrument tuning activities
performed through the ground test campaigns, from Unit to Satellite Levels.
Tuning is key to achieve the best possible instrument performance and tuning
parameters strongly depend on thermal and electrical conditions. For this
reason tuning has been repeated several times during ground tests and it has
been repeated in flight before starting nominal operations. The paper discusses
the tuning philosophy, the activities and the obtained results, highlighting
developments and changes occurred during test campaigns. The paper concludes
with an overview of tuning performed during the satellite cryogenic test
campaign (Summer 2008) and of the plans for the just started in-flight
calibration.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in JINST. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The definitive publisher authenticated version is available
online at http://dx.doi.org/10.1088/1748-0221/4/12/T12013
Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers
The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries
eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each
composed of a pair of pseudo-correlation receivers. We describe the on-ground
calibration campaign performed to qualify the flight model RCAs and to measure
their pre-launch performances. Each RCA was calibrated in a dedicated
flight-like cryogenic environment with the radiometer front-end cooled to 20K
and the back-end at 300K, and with an external input load cooled to 4K. A
matched load simulating a blackbody at different temperatures was placed in
front of the sky horn to derive basic radiometer properties such as noise
temperature, gain, and noise performance, e.g. 1/f noise. The spectral response
of each detector was measured as was their susceptibility to thermal variation.
All eleven LFI RCAs were calibrated. Instrumental parameters measured in these
tests, such as noise temperature, bandwidth, radiometer isolation, and
linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and
Astrophysic
Living with a long-term condition: understanding well-being for individuals with thrombophilia or asthma
range of literature has explored the experience of living with a long-term condition (LTC), and frequently treats such
experiences and conditions as problematic. In contrast, other research has demonstrated that it may be possible to adapt and
achieve well-being, even when living with such a condition. This tends to focus on meaning and the qualitative experience of
living with an LTC, and offers alternative perspectives, often of the same or similar conditions. As a result of these conflicting
views, this study chose to consider two conditions which, though they may lead to life-threatening illness on occasion, do not
appear to impact significantly the lives of all those affected on a daily basis. The aim of this research was to explore and
explain how people make sense of two long-term, potentially life-threatening health conditions, namely, thrombophilia and
asthma. In doing so, it specifically considered the contribution made by information about the condition. A constructivist
grounded theory approach was adopted; this enabled the generation of a theory regarding how people make sense of their
LTC, whilst acknowledging the social circumstances in which this was situated. Semi-structured interviews were conducted
with 16 participants who had given consent to take part in the research. The findings demonstrate that participants undergo a
two-stage process
*
gaining knowledge
and
living with a long-term condition
. The theory based on these findings indicates that
those who are knowledgeable about their condition, making informed decisions in relation to it, and accept their condition
are able to live with it, whilst those who do not accept their condition do not fully adapt to it or integrate it into their live
Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance
We give the calibration and scientific performance parameters of the Planck
Low Frequency Instrument (LFI) measured during the ground cryogenic test
campaign. These parameters characterise the instrument response and constitute
our best pre-launch knowledge of the LFI scientific performance. The LFI shows
excellent stability and rejection of instrumental systematic effects;
measured noise performance shows that LFI is the most sensitive instrument of
its kind. The set of measured calibration parameters will be updated during
flight operations through the end of the mission.Comment: Accepted for publications in Astronomy and Astrophysics. Astronomy &
Astrophysics, 2010 (acceptance date: 12 Jan 2010
- …