86 research outputs found

    In-vehicle nitrogen dioxide concentrations in road tunnels

    Get PDF
    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08–0.36), suggesting that vehicle occupants can significantly lower their exposure to NO in tunnels by switching recirculation on. The highest mean I/O ratios for NO were measured in older vehicles (0.35–0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    Thermal susceptibility of the Planck-LFI receivers

    Get PDF
    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst . This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T1201

    The linearity response of the Planck-LFI flight model receivers

    Get PDF
    In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T12011

    Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Get PDF
    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    Planck-LFI radiometers tuning

    Get PDF
    "This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst" This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at http://dx.doi.org/10.1088/1748-0221/4/12/T12013

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    Living with a long-term condition: understanding well-being for individuals with thrombophilia or asthma

    Get PDF
    range of literature has explored the experience of living with a long-term condition (LTC), and frequently treats such experiences and conditions as problematic. In contrast, other research has demonstrated that it may be possible to adapt and achieve well-being, even when living with such a condition. This tends to focus on meaning and the qualitative experience of living with an LTC, and offers alternative perspectives, often of the same or similar conditions. As a result of these conflicting views, this study chose to consider two conditions which, though they may lead to life-threatening illness on occasion, do not appear to impact significantly the lives of all those affected on a daily basis. The aim of this research was to explore and explain how people make sense of two long-term, potentially life-threatening health conditions, namely, thrombophilia and asthma. In doing so, it specifically considered the contribution made by information about the condition. A constructivist grounded theory approach was adopted; this enabled the generation of a theory regarding how people make sense of their LTC, whilst acknowledging the social circumstances in which this was situated. Semi-structured interviews were conducted with 16 participants who had given consent to take part in the research. The findings demonstrate that participants undergo a two-stage process * gaining knowledge and living with a long-term condition . The theory based on these findings indicates that those who are knowledgeable about their condition, making informed decisions in relation to it, and accept their condition are able to live with it, whilst those who do not accept their condition do not fully adapt to it or integrate it into their live

    Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance

    Get PDF
    We give the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our best pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f1/f stability and rejection of instrumental systematic effects; measured noise performance shows that LFI is the most sensitive instrument of its kind. The set of measured calibration parameters will be updated during flight operations through the end of the mission.Comment: Accepted for publications in Astronomy and Astrophysics. Astronomy & Astrophysics, 2010 (acceptance date: 12 Jan 2010
    • …
    corecore