8 research outputs found

    Rocket engine injectorhead with flashback barrier

    Get PDF
    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation

    Spark-integrated propellant injector head with flashback barrier

    Get PDF
    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation

    Microfluidic Flame Barrier

    Get PDF
    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation

    Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: A united approach

    Get PDF
    Item does not contain fulltextCerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE)

    Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology.

    No full text
    IntroductionWe sought to establish the relationships between standard postmortem measures of AD neuropathology and antemortem [11C]PIB-positron emission tomography ([11C]PIB-PET) analyzed with the Centiloid (CL) method, a standardized scale for Aβ-PET quantification.MethodsFour centers contributed 179 participants encompassing a broad range of clinical diagnoses, PET data, and autopsy findings.ResultsCL values increased with each CERAD neuritic plaque score increment (median -3 CL for no plaques and 92 CL for frequent plaques) and nonlinearly with Thal Aβ phases (increases were detected starting at phase 2) with overlap between scores/phases. PET-pathology associations were comparable across sites and unchanged when restricting the analyses to the 56 patients who died within 2 years of PET. A threshold of 12.2 CL detected CERAD moderate-to-frequent neuritic plaques (area under the curve = 0.910, sensitivity = 89.2%, specificity = 86.4%), whereas 24.4 CL identified intermediate-to-high AD neuropathological changes (area under the curve = 0.894, sensitivity = 84.1%, specificity = 87.9%).DiscussionOur study demonstrated the robustness of a multisite Centiloid [11C]PIB-PET study and established a range of pathology-based CL thresholds
    corecore