684 research outputs found

    Historical controversies about the thalamus: from etymology to function

    Get PDF
    The authors report on and discuss the historical evolution of the 3 intellectual and scientific domains essential for the current understanding of the function of the human thalamus: 1) the identification of the thalamus as a distinct anatomical and functional entity, 2) the subdivision of thalamic gray matter into functionally homogeneous units (the thalamic nuclei) and relative disputes about nuclei nomenclature, and 3) experimental physiology and its limitations.Galen was allegedly the first to identify the thalamus. The etymology of the term remains unknown although it is hypothesized that Galen may have wanted to recall the thalamus of Odysseus. Burdach was the first to clearly and systematically define the thalamus and its macroscopic anatomy, which paved the way to understanding its internal microarchitecture. This structure in turn was studied in both nonhuman primates (Friedemann) and humans (Vogt and Vogt), leading to several discrepancies in the findings because of interspecies differences. As a consequence, two main nomenclatures developed, generating sometimes inconsistent (or nonreproducible) anatomo-functional correlations. Recently, considerable effort has been aimed at producing a unified nomenclature, based mainly on functional data, which is indispensable for future developments. The development of knowledge about macro- and microscopic anatomy has allowed a shift from the first galenic speculations about thalamic function (the "thalamus opticorum nervorum") to more detailed insights into the sensory and motor function of the thalamus in the 19th and 20th centuries. This progress is mostly the result of lesion and tracing studies. Direct evidence of the in vivo function of the human thalamus, however, originates from awake stereotactic procedures only.Our current knowledge about the function of the human thalamus is the result of a long process that occurred over several centuries and has been inextricably intermingled with the increasing accumulation of data about thalamic macro- and microscopic anatomy. Although the thalamic anatomy can currently be considered well understood, further studies are still needed to gain a deeper insight into the function of the human thalamus in vivo

    Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice − mediation by enhanced incentive motivation?

    Full text link
    The subthalamic nucleus (STN) is traditionally thought of as part of a system involved in motor control but recent evidence suggests that it may also play a role in other psychological processes. Here we examined the effects of STN lesions on two measures of impulsivity and found that STN lesions increased ‘impulsive action’ (produced behavioral disinhibition), as measured by performance on a differential reinforcement of low rates of responding task, but decreased ‘impulsive choice’ (impulsive decision making), as measured by a delay discounting task. In addition, amphetamine and food restriction increased ‘impulsive action’ and decreased ‘impulsive choice’ to a greater extent in STN-lesioned animals than in sham controls. We speculate that these apparently discrepant effects may be because STN lesions enhance the incentive salience assigned to rewards. These findings suggest that the STN may serve as a novel target for the treatment of psychological disorders characterized by deficits in behavioral control, such as drug addiction and attention deficit hyperactivity disorder.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75418/1/j.1460-9568.2006.05117.x.pd

    Immunotoxin-Mediated Tract Targeting in the Primate Brain: Selective Elimination of the Cortico-Subthalamic “Hyperdirect” Pathway

    Get PDF
    Using a neuron-specific retrograde gene-transfer vector (NeuRet vector), we established immunotoxin (IT)-mediated tract targeting in the primate brain that allows ablation of a neuronal population constituting a particular pathway. Here, we attempted selective removal of the cortico-subthalamic “hyperdirect” pathway. In conjunction with the direct and indirect pathways, the hyperdirect pathway plays a crucial role in motor information processing in the basal ganglia. This pathway links the motor-related areas of the frontal lobe directly to the subthalamic nucleus (STN) without relay at the striatum. After electrical stimulation in the motor-related areas such as the supplementary motor area (SMA), triphasic responses consisting of an early excitation, an inhibition, and a late excitation are usually detected in the internal segment of the globus pallidus (GPi). Several lines of pharmacophysiological evidence suggest that the early excitation may be derived from the hyperdirect pathway. In the present study, the NeuRet vector expressing human interleukin-2 receptor α-subunit was injected into the STN of macaque monkeys. Then, IT injections were made into the SMA. In these monkeys, single-neuron activity in the GPi was recorded in response to the SMA stimulation. We found that the early excitation was largely reduced, with neither the inhibition nor the late excitation affected. The spontaneous firing rate and pattern of GPi neurons remained unchanged. This indicates that IT-mediated tract targeting successfully eliminated the hyperdirect pathway selectively from the basal ganglia circuitry without affecting spontaneous activity of STN neurons. The electrophysiological finding was confirmed with anatomical data obtained from retrograde and anterograde neural tracings. The present results define that the cortically-driven early excitation in GPi neurons is mediated by the hyperdirect pathway. The IT-mediated tract targeting technique will provide us with novel strategies for elucidating various neural network functions

    Prefrontal Cortex Lesions Impair Object-Spatial Integration

    Get PDF
    How and where object and spatial information are perceptually integrated in the brain is a central question in visual cognition. Single-unit physiology, scalp EEG, and fMRI research suggests that the prefrontal cortex (PFC) is a critical locus for object-spatial integration. To test the causal participation of the PFC in an object-spatial integration network, we studied ten patients with unilateral PFC damage performing a lateralized object-spatial integration task. Consistent with single-unit and neuroimaging studies, we found that PFC lesions result in a significant behavioral impairment in object-spatial integration. Furthermore, by manipulating inter-hemispheric transfer of object-spatial information, we found that masking of visual transfer impairs performance in the contralesional visual field in the PFC patients. Our results provide the first evidence that the PFC plays a key, causal role in an object-spatial integration network. Patient performance is also discussed within the context of compensation by the non-lesioned PFC
    corecore