118 research outputs found

    Commentary on Mifsud

    Get PDF

    Commentary on Plug

    Get PDF

    LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint

    Get PDF
    Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway

    LINE-1 ORF2p expression is nearly imperceptible in human cancers

    Get PDF
    Background Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. Results We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. Conclusions Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth

    Sex-specific innate immune selection of HIV-1 in utero is associated with increased female susceptibility to infection

    Get PDF
    Female children and adults typically generate more efficacious immune responses to vaccines and infections than age-matched males, but also suffer greater immunopathology and autoimmune disease. We here describe, in a cohort of>170 in utero HIV-infected infants from KwaZulu-Natal, South Africa, fetal immune sex differences resulting in a 1.5-2-fold increased female susceptibility to intrauterine HIV infection. Viruses transmitted to females have lower replicative capacity (p=0.0005) and are more type I interferon-resistant (p=0.007) than those transmitted to males. Cord blood cells from females of HIV-uninfected sex-discordant twins are more activated (p=0.01) and more susceptible to HIV infection in vitro (p=0.03). Sex differences in outcome include superior maintenance of aviraemia among males (p=0.007) that is not explained by differential antiretroviral therapy adherence. These data demonstrate sex-specific innate immune selection of HIV associated with increased female susceptibility to in utero infection and enhanced functional cure potential among infected males. Sex differences in the immune response to vaccines and infections have been well described in children and adults. Here the authors describe, in a cohort of 177 HIV-infected infants, innate immune sex differences in fetal life that increase female susceptibility to intrauterine HIV infection and increase the chances of subsequent HIV remission in infected males

    SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Parasitic infection caused by blood flukes of the genus Schistosoma is a major global health problem. More than 200 million people are infected. Identifying and characterizing the constituent enzymes of the parasite's biochemical pathways should reveal opportunities for developing new therapies (i.e., vaccines, drugs). Schistosomes feed on host blood, and a number of proteolytic enzymes (proteases) contribute to this process. We have identified and characterized a new protease, SmCL3 (for Schistosoma mansoni cathepsin L3), that is found within the gut tissue of the parasite. We have employed various biochemical and molecular biological methods and sequence similarity analyses to characterize SmCL3 and obtain insights into its possible functions in the parasite, as well as its evolutionary position among cathepsin L proteases in general. SmCL3 hydrolyzes major host blood proteins (serum albumin and hemoglobin) and is expressed in parasite life stages infecting the mammalian host. Enzyme substrate specificity detected by positional scanning-synthetic combinatorial library was confirmed by molecular modeling. A sequence analysis placed SmCL3 to the cluster of other cathepsins L in accordance with previous phylogenetic analyses

    Mucedorus: the last ludic playbook, the first stage Arcadia

    Get PDF
    This article argues that two seemingly contradictory factors contributed to and sustained the success of the anonymous Elizabethan play Mucedorus (c. 1590; pub. 1598). First, that both the initial composition of Mucedorus and its Jacobean revival were driven in part by the popularity of its source, Philip Sidney's Arcadia. Second, the playbook's invitation to amateur playing allowed its romance narrative to be adopted and repurposed by diverse social groups. These two factors combined to create something of a paradox, suggesting that Mucedorus was both open to all yet iconographically connected to an elite author's popular text. This study will argue that Mucedorus pioneered the fashion for “continuations” or adaptations of the famously unfinished Arcadia, and one element of its success in print was its presentation as an affordable and performable version of Sidney's elite work. The Jacobean revival of Mucedorus by the King's Men is thus evidence of a strategy of engagement with the Arcadia designed to please the new Stuart monarchs. This association with the monarchy in part determined the cultural functions of the Arcadia and Mucedorus through the Interregnum to the close of the seventeenth century

    Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development

    Get PDF
    Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs

    Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

    Get PDF
    Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system
    corecore