75 research outputs found

    Increasing Flight Software Reuse with OpenSatKit

    Get PDF
    In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospace's command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for users to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS "App Store".. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans

    The average magnetic field draping and consistent plasma properties of the Venus magnetotail

    Get PDF
    A new technique has been developed to determine the average structure of the Venus magnetotail (in the range from −8 Rv to −12 Rv) from the Pioneer Venus magnetometer observations. The spacecraft position with respect to the cross-tail current sheet is determined from an observed relationship between the field-draping angle and the magnitude of the field referenced to its value in the nearby magnetosheath. This allows us statistically to remove the effects of tail flapping and variability of draping for the first time and thus to map the average field configuration in the Venus tail. From this average configuration we calculate the cross-tail current density distribution and J × B forces. Continuity of the tangential electric field is utilized to determine the average variations of the X-directed velocity which is shown to vary from −250 km/s at −8 Rv to −470 km/s at −12 Rv. From the calculated J × B forces, plasma velocity, and MHD momentum equation the approximate plasma acceleration, density, and temperature in the Venus tail are determined. The derived ion density is approximately ∼0.07 p+/cm³ (0.005 O+/cm³) in the lobes and ∼0.9 p+/cm³ (0.06 O+/cm³) in the current sheet, while the derived approximate average plasma temperature for the tail is ∼6×106 K for a hydrogen plasma or ∼9×107 K for an oxygen plasma

    Lessons from 30 Years of Flight Software

    Get PDF
    This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS

    Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    Get PDF
    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared

    Automated Test for NASA CFS

    Get PDF
    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications

    Connecting Research and Practice: An Experience Report on Research Infusion with SAVE

    Get PDF
    NASA systems need to be highly dependable to avoid catastrophic mission failures. This calls for rigorous engineering processes including meticulous validation and verification. However, NASA systems are often highly distributed and overwhelmingly complex, making the software portion of these systems challenging to understand, maintain, change, reuse, and test. NASA's systems are long-lived and the software maintenance process typically constitutes 60-80% of the total cost of the entire lifecycle. Thus, in addition to the technical challenges of ensuring high life-time quality of NASA's systems, the post-development phase also presents a significant financial burden. Some of NASA's software-related challenges could potentially be addressed by some of the many powerful technologies that are being developed in software research laboratories. Many of these research technologies seek to facilitate maintenance and evolution by for example architecting, designing and modeling for quality, flexibility, and reuse. Other technologies attempt to detect and remove defects and other quality issues by various forms of automated defect detection, architecture analysis, and various forms of sophisticated simulation and testing. However promising, most such research technologies nevertheless do not make the transition from the research lab to the software lab. One reason the transition from research to practice seldom occurs is that research infusion and technology transfer is difficult. For example, factors related to the technology are sometimes overshadowed by other types of factors such as reluctance to change and therefore prohibits the technology from sticking. Successful infusion might also take very long time. One famous study showed that the discrepancy between the conception of the idea and its practical use was 18 years plus or minus three. Nevertheless, infusing new technology is possible. We have found that it takes special circumstances for such research infusion to succeed: 1) there must be evidence that the technology works in the practitioner's particular domain, 2) there must be a potential for great improvements and enhanced competitive edge for the practitioner, 3) the practitioner has to have strong individual curiosity and continuous interest in trying out new technologies, 4) the practitioner has to have support on multiple levels (i.e. from the researchers, from management, from sponsors etc), and 5) to remain infused, the new technology has to be integrated into the practitioner's processes so that it becomes a natural part of the daily work. NASA IV&V's Research Infusion initiative sponsored by NASA's Office of Safety & Mission Assurance (OSMA) through the Software Assurance Research Program (SARP), strives to overcome some of the problems related to research infusion

    Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

    Get PDF
    Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the EPs measured by the Integrated Science Investigation of the Sun (IS⊙IS) instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the IS⊙IS observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy (~15 – 200 keV/nuc) IS⊙IS data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar EPs, a picture that should become clear with future PSP orbits

    Temporal Variability of Diapycnal Mixing in Shag Rocks Passage

    Get PDF
    Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here we present results from a method developed to calculate diapycnal diffusivity from moored Acoustic Doppler Current Profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400 m depth, 600 m above the sea floor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10-4 m2 s-1 near the sea floor, decreasing to the expected background level of ~ 0.1 × 10-4 m2 s-1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400 to 1800 m; thus the moored time series was obtained from a region of moderately enhanced diffusivity. The diffusivity time series has a median of 3.3 × 10-4 m2 s-1 and a range of 0.5 × 10-4 m2 s-1 to 57 × 10-4 m2 s-1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately fourteen days (likely due to the spring-neaps tidal cycle), and at periods of 3.8 and 2.6 days most likely due to topographically-trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically-trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anti-correlated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system
    • …
    corecore