
Automated Test for NASA CFS

David C. McComas 1, Susanne L. Strege 1, Paul B. Carpenter 2, Randy Hartman 2

1 NASA Goddard Space Flight Center
2 EXB Solutions, Inc. (EXB)

Abstract

The core Flight System (cFS) is a flight
software (FSW) product line developed by
the Flight Software Systems Branch (FSSB)
at NASA’s Goddard Space Flight Center
(GSFC). The cFS uses compile-time
configuration parameters to implement
variable requirements to enable portability
across embedded computing platforms and to
implement different end-user functional
needs. The verification and validation of
these requirements is proving to be a
significant challenge. This paper describes
the challenges facing the cFS and the results
of a pilot effort to apply EXB Solution’s
testing approach to the cFS applications.

KEYWORDS - Core Flight Software,
Software Reuse, Test Automation, API, FSW

core Flight System (cFS) Overview

The core Flight System (cFS) is a flight
software (FSW) product line developed by
the Flight Software Systems Branch (FSSB)
over the past 10 years. The cFS uses a
layered architecture with four distinct layers
as shown in Figure 1 cFS Architecture
Layers. Layer 1 contains the Operating
System (OS) and Board Support Package
(BSP) and access to the functionality in these
components is controlled through two
Application Programmer’s Interfaces (APIs):

the Operating System Abstraction Layer
(OSAL) and the Platform Support Package
(PSP). The OSAL and PSP APIs provide a
platform independent (OS and hardware)
interface that provides common OS and BSP
services. Layer 2 contains the core Flight
Executive (cFE) that provides services, which
has proven to be common across most FSW
projects. The APIs in Layers 1 and 2 have
been instrumental in the cFS’ success across
multiple platforms and these APIs have
remained stable for the past few years.
Together they define an application runtime
environment and have enabled a community
of cFS users to create an “App Store.”
Applications reside in Layer 4 and
Application Libraries (e.g. linear algebra
math library), which can be shared among
multiple applications, reside in Layer 3.

Previous FSW reuse efforts have not attained
all of the benefits of reuse because they
employed a “clone and own” approach. A
new project would copy FSW components
from one or more previous missions based on
functional requirement similarities. Usually
the code would be tweaked and the entire
verification and validation effort had to be
performed for the new mission. Therefore the
cost savings were limited and since FSW
components were not configuration managed
separately from projects component quality
did not necessarily increase because a single
lineage for each component was not
maintained.

https://ntrs.nasa.gov/search.jsp?R=20150020918 2019-08-31T05:35:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42704597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1
cFS Architecture Layers

cFS Lifecycle Reuse

To improve upon the shortcomings of the
“clone and own” approach, the cFS takes the
entire FSW lifecycle into account and
contains reusable artifacts for each phase as
shown in Figure 2, Trace Configuration
Parameters. The shaded components are cFS
artifacts and the <p> notation indicates a
parameterized artifact. The following steps
illustrate a typical cFS project deployment:

1. Requirements Management

a. The FSW team receives project
requirements. These requirements are
traced to existing cFS subsystem
requirements. Most if not all of the
requirements at this level are
implemented by cFS applications so a
FSW systems engineer can tailor the cFS
to a project by selecting the appropriate
cFS applications. These options will

continue to grow as the cFS App Store
contains more apps.

b. The detailed FSW requirements are
instantiated by selecting specific
configuration parameters for
parameterized requirements.

2. Code Instantiation

a. The cFS configuration parameters are
contained in C header files that are set by
the FSW team. These parameters are
refined as the development effort
matures.

b. Note in Figure 2 that some configuration
parameters trace to requirements and
some are only contained in the C header
files. The header-only parameters are
design in nature and do not impact
functional requirements. For example
default file paths and names are defined
as configuration parameters and these do
not trace to a functional requirement.

cFE
App 1
cFE

App 1
cFE

App 1
cFE

App 1

OS Abstraction API

cFE API

Application
Library

Member Application
Libraries

cFE
Apps

(5)

Application
Layer

Application
Library Layer

Executive
Layer

Platform
Abstraction Layer

cFE Core

OS Abstractions
 (Linux, RTEMS,

VxWorks)

cFE Platform Support
Packages

cFE PSP API

Member
Apps

Community Controlled
Member Controlled
Community Archived

Figure 2
Trace of Configuration Parameters

3. Verification and validation

a. Typically a project does not rerun
component unit tests. These tests have
been designed to test all source lines and
to provide reasonable coverage of path
coverage. The current unit tests have not
been design to adapt to project-specific
configuration parameters. In addition
requirements are not “checked off” at the
unit level.

b. The current cFS artifacts do not include
integration tests. Projects must perform
this step to verify the cFS properly
functions as a system.

c. The cFS build test verify functional
requirements and these have been
designed to read in the C header files and
adapt the test accordingly so the project
instantiated functional requirements can
be verified. However, the cFS build test
execute on the Advanced Spacecraft
Integration & System Test (ASIST)
ground system so if a project is using a

different ground system then the build
test can’t be rerun as delivered.

d. Most GSFC projects perform system
level test which are design based on user
scenarios rather than from a functional
requirements perspective. The cFS
artifacts do not cover this level of testing.

The cFS product line approach has proven to
be effective for achieving more
comprehensive FSW reuse and for reducing
cost however there are still challenges in the
verification and validation processes. There
are a large number of configuration
parameters with an extremely large number of
parameter setting permutations. cFE version
6.3 contains 139 configuration parameters
and the number of configuration parameters
per app currently ranges from 8-45. The cFS
applications also make use of tables. A table
is a collection of data elements that can be
loaded during runtime and most tables have
default values that must be tuned by a project.

Detailed
Requirements

Code Unit
(Developer)

Build Test
(Tester)

FSW Subsystem
Requirements

Integration Test
(Developer)

System Test
(Tester)

Project
Requirements

CFS
Repository

<p>

<p> CFS
Repository

<p>

<p>

<p>

The configuration parameters and table
variables can be thought of as a configuration
space. It is cost prohibitive to test the entire
configuration space. The unit tests are only
run against a single set of C header
configuration parameters and tables are
populated with whatever values help test code
paths. The build tests can adapt to
configuration parameter setting but due to
cost constraints they have only been run using
a single set of configurations.

Projects are faced with the decision whether
to rerun the build test using the project’s
configuration settings or to accept the risk of
not fully testing the functional requirements
with the project’s configuration. There are
several factors influencing this decision. Is
the project using the ASIST ground system
that allows them to rerun the cFS build test
suite? Does the project have the expertise
required to rerun the build test and interpret
the results? When will the project’s
configuration settings be stable? How much
effort has the project put into the integration
testing?

There is another more fundamental question
that challenges the reuse approach itself. We
use or reuse operating systems and they have
tunable configurations however we don’t
trace them to higher level functional
requirements and rerun verification tests (one
could argue we should, provided we have
adequate budgets). Operating systems
implement design requirements that provide
the infrastructure for implementing user
functional requirements. In this respect the
OSAL and PSP are similar to operating
systems but as we move up the cFS layers the
functionality is traceable to user
requirements. Therefore the cFE and cFS
application requirements are traced to project
requirements and verified within a project’s
context and configuration. It is on this
premise that the cFS reuse is treated

differently than the use of an operating
system.

cFS Community with an ‘App Store’

The cFS continues to gain in popularity
among the NASA centers and has made
inroads into the commercial sector. Goddard
Space Flight Center’s Lunar Reconnaissance
Orbiter (LRO) launched in 2009 uses the cFE
and the Global Precipitation Measurement
(GPM) launched in 2014 and the
Magnetospheric Multi-scale Mission
Spacecraft (MMS) launched in March 2015
used the complete cFS. The Ames Research
Center’s Lunar and Dust Environment
Explorer (LADEE) spacecraft launched in
2014 and Johnson Space Center’s Morpheus
project tested in 2013 use the complete cFS.
The Johns Hopkins University Applied
Physics Lab’s Radiation Belt Storm Probe
launched in 2012 uses the cFE. In addition to
these projects other NASA centers are
evaluating the cFS for use in their projects
and multiple cFS-based Space Act
Agreements are being pursued with
commercial enterprises.

As the cFS user base continues to expand
efforts are underway to establish a cFS
community that would facilitate a cFS app
store. There are currently 12 cFS applications
and as the community matures this number is
expected to increase significantly. Therefore
the verification/validation effort will also
increase exponentially if we assume a similar
number of 8 to 45 configuration parameters
per application. In addition each application
will continue to be maintained and this
maintenance will require regression testing.
Therefore a more advanced approach towards
testing is needed.

NASA/EXB - Joint Project Description

A subset of applications including the Health
and Safety (HS) application software
requirements were selected to demonstrate the
value of EXB’s Software Requirements-
Based Testing Methodology and automated
testing process. EXB executes a
requirements-based test generation process
applicable to all levels of test development
and execution. The process includes thorough
analysis of the software requirements, the use
of EXB’s TestCompass® toolset and
automation of test case and test procedure
development. In the case of the cFS the
process facilitated the implementation of auto
execution of testing. Finally it supports
resource allocation, status, trace, and
coverage reports.

Scope of the Pilot Project

NASA Goddard identified two areas of
concern to be addressed during the pilot are:
cost effective maintenance of requirements-
based application tests and 100% testing
coverage of the configuration space.

EXB was given the Software Requirements
Document for the Health and Safety
Application to use as the example for
requirements-based testing. EXB used the
boundary definitions of the configuration
parameters defined in header files as the basis
for test case generation.

During a follow-on contract EXB evaluated
nine additional applications using the same
methodology.

EXB’s Software Requirements-Based
Testing Methodology

There is a trade-off in software testing
between budget, time and quality. Typically,
when quality is paramount, time and budget
are increased. The goal of the Methodology is

to improve quality, while using automation to
reduce budget and schedule.

Two specific areas of quality improvement
emphasized by the EXB Methodology are
data boundary testing and logic testing.
EXB’s TestCompass software automatically
generates test cases for low bound, just above
low bound, high bound, and just below high
bound; and optionally, just below low bound
and just above high bound. These test cases
ensure that data bounds are thoroughly tested.
TestCompass also generates test cases that
ensure Multi-Condition/Decision Coverage
(MCDC) of logic statements which is a
requirement for safety-critical avionics
systems. TestCompass generates the
minimum number of test cases to satisfy these
quality objectives.

The entire Methodology focuses on five
major steps of systems/software testing:
requirements analysis, test design, test case
development, test procedure development,
and test execution.

1. Requirements Analysis

Requirements analysis is a central theme of
the Methodology, which, encourages early
involvement of the testing organization. The
focus in requirements analysis is the
testability of requirements, which, ensures the
testability issues and identified problems are
fixed early in the development lifecycle. A
second important aspect of requirements
analysis is traceability of requirements to
tests. During the test design step, tests are
identified and organized based on the
requirements. Later, during the test case
development step, requirements are allocated
to test scenarios where they will be verified.
A traceability report identifies requirements
that are not tested in any test scenario
improving test coverage and ultimately
improving product quality. When the testing
organization is involved early in the program,

these steps are completed long before the
software is available for test procedure
development.

The TestCompass software toolset supports
the requirements analysis and test
development steps in a fully-integrated,
customizable test development environment.

Requirements analysis provides:
• Testable requirements
• Initial project schedule and scope
• Initial coverage analysis
• Rapid impact of requirement changes

2. Test Design

The Test Design thoroughly evaluates the
requirements documentation to determine
how to organize the requirements for testing.
EXB uses a partitioning approach for
organizing tests. Individual tests are grouped
together into Test Packages, and Test
Packages are grouped together into Test
Groups. Every requirement must have either
full traceability to a single test or partial
traceability to multiple tests, and this is
verified with traceability reports that are
generated from the Test Database.

Every test is modeled as a UML use case in
TestCompass. The use cases contain
requirements traceability as well as
information about the development status of
the test.

Test design provides:
• Organized requirements
• Reliable project schedule
• Requirements coverage reports
• Identification of inadequate requirements
• Rapid impact of requirement changes
• Traceability and status reports

The weekly status report in Figure 3 provides
a summary of the current status of every test.

Figure 3

Status Report

3. Test Case Development

Tests are modeled with UML Activity
Diagrams. The diagrams capture test
scenarios, test behavior, requirements
traceability, and identify expected outputs. A
test scenario is a sequence of steps through an
activity diagram from start state to end state.
To ensure that every requirement is tested,
every named transition must occur in at least
one test scenario.

Test Case Development is a fully-automated
step using the test case generation component
of TestCompass, which, uses standard test
case creation techniques such as boundary
analysis, equivalence-class analysis, path
analysis, and structural coverage analysis.

The test case generator has the following
capabilities:

0

10

20

30

40

50

60

70

80

90

• Extracts the test design from the UML
database

• Verifies the Test Design testability
• Creates sample test data
• Integrates the samples into test cases
• Generates a minimal number of test

cases for each test scenario
• Generates expected outputs for output

data items
• Generates machine-readable (XML) and

human-readable (PDF and HTML) test
case specifications

When using automated test case generation:

• Test cases are reviewed as part of the
requirements process

• Test cases are created within a
standardized process

• Documentation format is standardized
• Test cases trace to requirements when

combined with a modeling tool
• Test cases are regenerated without

manual intervention when requirements
change

• Expected outputs are automatically
generated.

4. Test Procedure Development

In test procedure development, Test
Engineers begin with the test case
specification and produce test procedure
specifications in a client-proprietary format.
The client-proprietary format may be
designed for manual execution on the target
system, or it may be designed for automated
testing in a simulated or actual system.

This partially automated process uses
TestCompass and project-specific software.
The project-specific software generates test
procedures in client-proprietary software
testing languages. EXB develops the test
procedure generator with guidance from the
client.

When testing software design requirement
using a language such as C, the majority of
the test procedures can be fully generated by
the test procedure generator. When testing
high-level software requirements, the test
procedure generator creates test drivers, and
library functions that are completed by the
test engineers. Much of the manual effort
consists of setting pre- and post-conditions
and correlating data names in requirements
terminology to implementation terminology.

Test procedures created using automated test
generation:

• Use a standardized process
• Result in a standard format
• Are created in real time
• Are regenerated and changes minimized

when requirements change
• Run unattended when new builds are

created

5. Test Execution

Test procedures are developed specifically for
the customer’s test execution environment.
Typically, supporting tools are developed to
automate tasks related to test execution and
reporting.

EXB’s Methodology works in manual and
automated testing environments. Automated
tests can be executed in on-target and off-
target simulators as well as fully-operational
systems.

Requirements-Based Testing of the NASA
Health and Safety (HS) Application

The Pilot Project demonstrated the Test
Design and Test Case Development aspects
the Methodology using an example cFS
application. EXB analyzed the HS
requirements and created a set of UML use
case diagrams similar to the diagram shown
Figure 4. The UML package symbol, labeled

“Critical_Application_Monitoring”r
represents a test package. The UML use case
symbol, labeled Verify_Application_
Execution represents a test. Requirements
traceability and status information is shown
with the use case.

Figure 4
UML Use Case Diagram

The transition from Test Design to Test Case
Development occurs when a UML activity
diagram is created for the use case. The
graphical representation is very useful for test
engineers to evaluate the testability of the
requirements. Incomplete and inconsistent
requirements are easily discernable, and the
diagram provides an excellent mechanism for
reviews with requirements engineers. Activity
diagrams are created by a thorough evaluation
of the required behavior. Branches in the
requirements, often shown as if-else
structures are shown as separate transitions
out of a state. Missing requirements are often
discovered during Test Case Development,
when “else” branch requirements are not
specified.

Test scenarios are defined by a sequence of
state transitions. In Figure 5, the test scenarios
are T01, T02, T03; T01, T02, T04; and T01,
T02, T05. The conditions for each state
transition are shown above the horizontal line,
and the individual conditions of state

transitions make up the combined condition
for the test scenario. A test case is generated
for the test scenario when all conditions are
set to TRUE.

The actions listed below the horizontal line on
the state transition define the expected
outputs for the state transitions. The activity
diagram and detailed data definitions provide
the necessary detail to automatically generate
a set of test cases for each test scenario.

NASA has a set of automated tests for the
Health and Safety application so test
procedure development was not performed to
meet these requirements although the process
implementation could be adapted to meet
those requirements.

Code-Based Testing of HS Configuration
Table

The purpose of this aspect of the Pilot Project
was to demonstrate the capability of
TestCompass to generate configuration
parameter test files that would be included in
the normal build process. Configuration files
containing out-of-bounds or otherwise illegal
values cause the compile to fail with an error
message, while configuration files with all
valid values compile normally. The
requirements for the configuration tables were
derived from user manuals and header files.

There were two C header files of interest in
this part of the pilot: hs_verify.h and
hs_platform_cfg.h. The definitions of the
parameters and their valid values are
contained in hs_verify.h. The default values
of the parameters used in the HS application
are defined in hs_platform_cfg.h. During the
Build Process, the parameter defaults in
hs_platform_cfg.h are evaluated against their
valid ranges in hs.verify.h. The Build Process
will halt and produce an error message if any
parameter definition is invalid.

Figure 5
UML Activity Diagram

The first step in the development of the
testing of the HS Configuration Table was to
identify all of the configuration parameters
contained in hs_verify.h. The file contained
26 parameters in the format of the example
shown below.

The second step was to develop a UML
model for each parameter. There are a total of
26 use case and activity diagrams, one for
each tested parameter. The use case diagram
for verifying the parameter
HS_UTIL_AVERAGE_NUM_INTERVAL
(HS-028) is shown in Figure 6.

Figure 6

UML Use Case Diagram

The use case contains development status and
traceability links to the requirements. There
was a review of the requirements document to
determine which requirements traced to
configuration parameters. In Figure 6, there
are three trace links to the high-level
requirements (HS6008, HS6009, and

HS6010). HS-REQ-128 represents a trace
link to the configuration file. Trace links to
other high-level requirements appear in other
use case diagrams.

The activity diagram for HS-028 is shown in
Figure 7.

Figure 7
UML Activity Diagram

Table 1 shows the test cases generated for
three test scenarios. The test case table
contains test input values and expected output
values.

The boundary analysis test development
contains state transitions for “below lower
bounds”, “above upper bounds”, and “in
bounds”. Because they assume valid
parameters, the high-level requirements only
trace to in-bounds state transitions.

Table 1

Generated Test Cases

The next step in the exercise was to generate
the test configuration files. A custom test
generator was developed to generate
hs_platform_cfg.h files where the test input
value replaces the default value. The low-
level testing of the configuration files was
accomplished with visual-C on the test
development platform. The configuration
parameter files were compiled with a test
driver. When hs_platform_cfg.h contained an
invalid value, the compile halted with an error
message. The error message was compared
with the expected message with a
PASS/FAIL result. During the course of the
testing six errors in parameter boundary
definitions were discovered.

TestCompass generates three reports that are
useful during test development and execution.
Table 2 is a fragment of the requirements
traceability report. It shows the requirements
allocated to the test, HS-028. The
requirements traceability report contains a
sequential list of requirements with the
locations of were the requirements are tested.
Requirements that are not tested are identified
in the report. When run as part of weekly
status reporting, the requirements traceability
report shows the progress of removing
traceability holes in the project.

Table 2
Traceability Report

Schedule and Cost Impact

Comparisons of cost and schedule between
the automated EXB Method and manual test
developments result in comparable initial
development. The EXB Methodology has a
higher upfront cost for requirements analysis
and test design, which results in more
complete testing with less rework. The Test
Procedure Generator develop for the project
created all of the files required for compiling

and executing configuration parameter header
files, and the creation of test results. This
eliminates cost in the back end of the process.
The EXB tools provide status and traceability
report generation as a by-product of test
development. Traceability analysis is usually
done near the end of the project, and new
tests may need to be created when
requirements are discovered to be untested.

Table 3 shows the development time
comparison for HS-028 between the EXB
Methodology and typical manual
development.

Table
Testing Tine Comparisons

The process described resulted in about 21
hours saved for the initial development of 215
tests. Additional savings result when changes
to the requirements occur and regression
testing is required.

NASA Virtual System Evaluation

NASA provided EXB access to a virtual
system, which, enables EXB to execute
automated Build Tests in an off-target
environment using STOL scripts. This
facilitates higher level testing while reducing
the cost and schedule required for the
execution of Build Tests in the on-target test
environment. The virtual test environment
provides a capability to build and test an
application, with modified hs_platform-cfg.h
files, using existing STOL test procedures
potentially reducing required system level
testing.

Benefits Demonstrated By Joint Project

This NASA/EXB project demonstrated the
advantages of applying a disciplined and
automated process to requirement-based
testing. This is particularly valuable for
Safety Critical and Mission Critical
applications with the following benefits:

• Requirement review and visual test case
definition assure testable requirements

• Automation minimizes human
involvement in regression testing and
testing of modified requirements for new
or existing applications

• Standard process/methodology increases
the quality and repeatability of testing

• Automatically generated documentation
provides consistent format and content

• An automation methodology that captures
the test case and test procedure definitions
in universal file formats capable of
integration with various commercially
available or proprietary automatic test
environments, comprehensively testing the
configuration space

• New and modified applications can be
efficiently tested and verified using the
virtual platform

• An automated methodology which,
minimizes the cost of retesting new
applications and/or new missions as the
cFS software is repurposed.

Project Outcomes

The demonstration validated the
configuration system of the cFS software and
provided a repeatable platform on which to
execute future testing. Along the way, EXB
identified 6 minor issues through the testing
process, tracked the progress of the effort and
created a repeatable process to do high and
low level testing in an automated
environment.

Conclusion

The cFS architectural Layers 1 and 2 APIs
shown in Figure 1 are now under a NASA-
wide configuration control board. A goal of
this board is to control the growth and
evolution of the application environment
which should allow for a sustainable “app
store”. As the number of applications

increases the creation of new tests and the
maintenance of application regression tests
becomes increasingly more important. FSW
will always require applications to be fully
qualified.

In this effort, the verification methodology
provides a well-defined repeatable process
with artifacts suitable for long term
maintenance. Therefore this approach may
serve as a common cFS application
verification method. Our next step is to
continue to apply the verification method to
additional cFS applications and to determine
whether it will serve as the standard cFS
verification methodology.

