
1

Lessons from

30 Years of

Flight Software

David McComas

NASA Goddard Space Flight Center

Software Engineering Division

Flight Software Systems Branch

9/22/15

https://ntrs.nasa.gov/search.jsp?R=20150019915 2019-08-31T06:07:24+00:00Z

Finding the Best Practices in R&D Software

 What is R&D?
- R&D is developing new solutions for a specific problem domain

 Flight software at Goddard has two relationships with R&D
- Part of the spacecraft and instruments that serve as tools for scientists to perform

their R&D

- Advance the state of technology in components with embedded processors and in the

software technology itself

 This presentation looks back on 30 years of flight

software development at the Goddard Space Flight

Center observing trends and capturing lessons

learned

2

My 30 Year Perspective

1.5 Years

Line Management

3

29 Years

Flight Projects

NASA Perspective

Answering the “Big” questions

 EARTH

- How is the global earth system changing?

- How will the Earth system change in the future?

 HELIOPHYSICS

- What causes the sun to vary?

- How do the Earth and Heliosphere respond?

- What are the impacts on humanity?

 PLANETS

- How did the sun's family of planets and minor bodies originate?

- How did the solar system evolve to its current diverse state?

- How did life begin and evolve on Earth, and has it evolved elsewhere in the Solar System?

- What are the characteristics of the Solar System that lead to the origins of life?

 ASTROPHYSICS

- How does the Universe Work?

- How did we get here?

- Are we alone?

To help answer these questions NASA builds spacecraft,

vehicles and instruments with lots of software on board
4

http://science.nasa.gov/earth-science/big-questions/is-the-global-earth-system-changing-and-what-are-the-consequences/
http://science.nasa.gov/earth-science/big-questions/how-well-can-we-predict-future-changes-in-the-earth-system/
http://science.nasa.gov/heliophysics/big-questions/how-and-why-does-the-sun-vary-and-what-are-the-consequences/
http://science.nasa.gov/heliophysics/big-questions/what-are-the-fundamental-physical-processes-of-the-space-environment/
http://science.nasa.gov/heliophysics/big-questions/how-does-solar-variability-affect-human-society-technological-systems-and-the-habitability-of-planets/
http://science.nasa.gov/planetary-science/big-questions/how-did-the-suns-family-of-planets-and-minor-bodies-originate/
http://science.nasa.gov/planetary-science/big-questions/how-did-the-solar-system-evolve-to-its-current-diverse-state/
http://science.nasa.gov/planetary-science/big-questions/how-did-life-begin-and-evolve-on-earth-and-has-it-evolved-elsewhere-in-the-solar-system/
http://science.nasa.gov/planetary-science/big-questions/what-are-the-characteristics-of-the-solar-system-that-lead-to-the-origins-of-life-1/
http://science.nasa.gov/astrophysics/big-questions/How-do-matter-energy-space-and-time-behave-under-the-extraordinarily-diverse-conditions-of-the-cosmos/
http://science.nasa.gov/astrophysics/big-questions/how-did-universe-originate-and-evolve-produce-galaxies-stars-and-planets-we-see-today/
http://science.nasa.gov/astrophysics/big-questions/what-are-characteristics-planetary-systems-orbiting-other-stars-and-do-they-harbor-life/

Goddard Perspective

NASA's Goddard Space Flight Center in Greenbelt, Maryland,

is home to the nation's largest organization of scientists,

engineers and technologists who build spacecraft, instruments

and new technology to study Earth, the sun, our solar system

and the universe.

5

Fight Software Perspective

 The Flight Software Systems Branch provides on-board, embedded software

products that enable spacecraft hardware, science instruments and flight

components to operate as an integrated on-orbit science observatory.

 Embedded software complicates the software development lifecycle

 High fidelity simulators are critical to verify the flight software prior to flight

hardware integration

 High reliability and fault tolerant to ensure spacecraft safety even with a failure

 Deterministic real-time performance required for attitude control, high speed

data, etc.

 Remote maintenance and system updates

- Subsystems fail over time (mission lifetimes are 3-20 years or more)

 Autonomous operations (i.e. In a broad sense, every spacecraft is a robot)

6

7

Flight Hardware Constraints

 Harsh space and launch environments as well as power, size
and weight limitations constrain hardware options.
- Minimize Size, Weight, and Power (SWaP)
- Power increases cause mass and size increases
- Radiation tolerant hardware

 Speed of processor
- Example: LRO and Curiosity use a 166 MHz processor , my laptop uses 2.5 GHz

processor

 Memory and storage
- LRO has 2MB of instruction memory, my laptop has 4GB of RAM for instructions and

data
- Curiosity has 2GB of Flash and 256 MB DRAM (Huge by spacecraft norms and

needed a RTG)

My First Spacecraft

 Hubble Space Telescope (HST)

- Launched on April 24, 1990 by Space Shuttle Discovery from Kennedy Space

Center

- Telescope observes in the near ultraviolet, visible, and near infrared spectra

- Operation for 25 years and counting

8

 Extreme Ultraviolet Explorer (EUVE)

- Launched on June 7, 1992 on a Delta II rocket from Cape Canaveral

- Perform an all-sky survey in the extreme ultraviolet band

- Observe EUV sources such as white dwarfs and coronal stars

1985 Unconstrained Commercial

Technology

 1984 Sony introduced the

discman to replace the tape-

based walkman

9

 1984 – Nokia introduced the
world’s first portable phone
weighing in at 11lbs and requiring
a car to charge the batteries.

 Macintosh, Windows 1.0, Amiga
1000, Commodore 128
and Consumer reports citing the
“mouse” and “icons” as major
advancements

HST & EUVE FSW Development

 EUVE Spacecraft bus based on the Multi-mission Modular Spacecraft (MMS) architecture

- NASA Standard Spacecraft Computer (NSSC-i)

• 18-bit data words with 64K of core memory, 33 instructions Fixed point arithmetic, 1Mhz clock

- MIL-STD-1750A Co-processor

- 64K of 32-bit word shared memory between the processors

 HST used the NSSC-I with a DF-224 co-processor with 32K 24-bit words available at one time

 Custom NSSC-I assembler and debugger

 Custom real-time operating system

 For NSSC-I development we counted CPU cycles for functions

 EUVE’s NSSC-I FSW exceeded available memory

- Default launch image included onetime autonomous deployment app that was replaced after deployments

 HST certified the lab prior to each acceptance test run

10

My last Spacecraft - GPM

 Global Precipitation Measurement (GPM) Launched on February 27, 2014 on

an H-IIA rocket from Tanegashima Space Center

 Follow on to the Tropical Rainfall Measurement Mission (TRMM) that moderate

and heavy rainfall in the tropics

- TRMM lasted ~17.5 years, Launched 11/27/97 and deactivated 4/9/15

 GPM extends TRMM’s measurements by measuring light rain and falling snow

in middle and high latitudes which account for significant fractions of

precipitation occurrences

11

GPM FSW Development

 RAD750 Processor based on the commercial PowerPC 750

operating at 132 MHz with 36MB RAM, 4MB EEPROM, and

4GB of Solid State Recorder memory

 Open Source GNU compiler and debugger

 Commercial VxWorks Operating System

 GPM did not use code generation but other contemporary in

house missions are using it

 cFS core, Co-developed cFS applications

12

1985 - 2015

Trends

Recent and Upcoming Processors

Mission Processor Clock

Speed

EEPROM Local RAM SSR RAM

SAMPEX 80386 6 MHz 256 KB (1 bank) 512 Kbytes 48 Mbytes

MAP Mongoose V 12 MHz 2 MB (2 banks) 32 MB shared 224 MB shared

LRO RAD750 132 MHz 4 MB (2 banks) 36 MB 16 GB

SDO RAD750 115 MHz 4 MB (1 bank) 8 MB 128 MB

GPM RAD750 132 MHz 4 MB (2 banks) 36 MB 4 GB

MMS Coldfire 40/20 MHz 4 MB (2 banks) 12 MB 600 MB

JWST ISIM RAD750 118 Mhz 4 MB 44 MB N/A

RNS… SpaceCube dual

core

250 Mhz 512MB flash 256 MB 960 GB (Hard

drive)

SpaceCube 2.0 PPC 440 2 To 6

cores

250 Mhz variable variable NA

Maestro (Lite)

Tilera 49 core 300Mhz variable variable NA

Tilera 16 core 300 Mhz variable variable NA

BAE RAD750 (new) PPC 750 200 Mhz variable variable NA

Leon3 FT
GR712RC

SPARC 8 Dual core 100 Mhz variable variable NA

Like the desktop, most next generation flight processors are multicore

Growth of Processor Clock Speed

SAMPEX

80386

WMAP

Mongoose V

10 MHz

20 MHz

30 MHz

40 MHz

50 MHz

60 MHz

70 MHz

80 MHz

90 MHz

100 MHz

110 MHz

MMS

Coldfire

SDO

RAD750

JWST/ISIM

RAD750

6 MHz

12 MHz

40 MHz

115 MHz
118 MHz

GPM

RAD750

132 MHz

Growth of Processor RAM Size

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

35 MB

40 MB

45 MB

512 KB

32 MB*

*Shared

With

SSR

RAM

12 MB

8 MB

44 MB

SAMPEX

80386

WMAP

Mongoose V

MMS

Coldfire

SDO

RAD750

JWST/ISIM

RAD750

GPM

RAD750

36 MB

FSW Functional Changes from EUVE to GPM

 Spacecraft Ephemeris
- EUVE: Interpolation using Hermitian Polynomials, required daily coefficient uploads

- EUVE: Experimental TDRSS Onboard Navigation System (TONS) that measured spacecraft-to-TDRSS signal Doppler

shift to determine spacecraft position and velocity

- Onboard propagator using Runge Kutta integration, required weekly position-velocity vector updates

- GPM: GPS receiver, requires no operational intervention and minimal FSW data processing

 Star Tracker
- EUVE: Optical camera and FSW processed images using onboard star catalog

- GPM: Digital tracker that outputs quaternions

 Telemetry formats
- EUVE: Time Division Multiplex data streams

- GPM: CCSDS standard compliant packets

 File System
- EUVE: None

- GPM: Onboard file system (FS), custom EEPROM FS, VxWorks RAM FS

- GPM: CCSDS File Delivery Protocol (CFDP) used for flight-ground file transfers

17

Observations and Lessons

 Using a commercial based processor allows space industry to leverage

broad user base and wide variety of tools available in the commercial

marketplace.

 More horsepower does not mean you get sloppy on performance.

- Manage your resource margins

- Keep experts around

- Proper diagnostic tools

 More horsepower does mean you can apply good software engineering

design principles

- Design first and optimize second. Should have always done but

harder when counting CPU cycles

 Hardware changes over time

- Use layered software architecture with object oriented components to
insulate and encapsulate 18

Flight Software

Development Process

9/9/2015AETD Mini-course 20S
o
ft

w
a
re

 L
if
e
c
y
c
le

P
ro

je
c
t
L
if
e
c
y
c
le

Lifecycle

MCR SRR CDR ORRPDR

ImplementationFormulation Maint.

Pre-A

Concept Studies

Phase A

Prelim. Analysis

Phase B

Prelim. Design

Phase C

Design

Phase D

Development

Phase E/F

Ops

• Effort / Cost Estimation

• Functionality / Scope

• System Req’s Defined

• Hardware Trades

• Development facility / tools

• Software Req’s Refined

• Software creation in ‘Builds’

• Software Testing

• On-orbit updates

• Troubleshooting

21

Software Costs

 Most Software costs are labor

- People generating code or testing software

- Some costs required for hardware and software development tools

• Compiler seats, software licenses, configuration management software,
etc.

 Estimating software costs is not perfect

- “How long does it take to create the software for 10 requirements?”

- “How long does it take to test 10 requirements?”

- Best estimates are a result of keeping good records from previous
endeavors

Software Development Process

22

Requirements
Definition

Preliminary
Design

Detailed
Design

Code,
Unit Test

Integration

Test

FSW PDR

FSW CDR

Build Test

Code Walkthroughs

FSW Requirements Review

Build Releases for Test

Final Release for Test

System Test

Final

Delivery

Phases repeat as

development

progresses

Each Build delivers a

significant portion of

tested requirements

Each pass through

this loop is a ‘Build’

Builds are integrated

and tested as a

Software System

23

FSW Branch Templates & Standards

 Based on FSW Lessons Learned

 Avoids ‘Reinventing’ Documents

 Guides Team Leads to Consider all Issues up-front

 Enables Rapid Mission Progress

24

FSW Development Automation

 Integrated Tools Set aid in:

- Requirements Management

- Configuration Management

- Defect and Change Tracking

- Test Status Management

25

Why Test?

 FSW is a critical element for mission success

- Software that crashes regularly may lose science data or
observation time

- Incorrect computations can jeopardize spacecraft or payload
safety

 The only way to know for sure the software works is to
test it in a flight-like environment

Project Mgr: Sally, you look troubled are you ok?

Sally: I’m worried about the software. The

more tests I do, the more problems I find.

Project Mgr: Well maybe you should stop testing the

software…

26
Software Engineering Economics (Prentice Hall,1981), Barry Boehm

Relative Cost of Software Defect

 The best time to find an error in any system is
right after it is introduced

- Finding a problem late in development can be
expensive to solve.

27

Test Staff

 Testers develop automated procedures to exercise the software and
look for expected output.

 Goal is to find problems before software is used by other subsystems:

- Need to check performance during boot-up, normal execution and under ‘stress’
conditions

- Need to verify all software interfaces work as expected

- Need to verify GN&C algorithms, science processing, power monitoring,
etc.

 The procedures are ‘scripts’ written for a ground system environment.

- Can be re-executed for each build to make sure previous functionality is
not lost.

- Allows for the software procedures to be used at spacecraft integration

28

Test Staff

 The test procedure development process is a software

development effort in itself.

- Usually about 1/3 to 1/2 the development staff

- Testers often specialize in specific areas. Examples:

• GN&C

• Timing

• Command handling

• etc

29

Test Types (1)

• Unit Tests

- Performed on non-flight-like hardware, usually by the
developer

- Verify Code Logic -- “Does it do what I intended?”

• Exercise full range of inputs and outputs

• Exercise all paths

• Integration Tests -- Repeated each build

- Performed on Flight-like Hardware

- Focus on hardware/software interfaces

- Exercise all threads of capabilities in the build

30

Test Types (2)

 Build Verification Tests

- Were FSW Requirements implemented correctly?

 System Validation Tests

- Does the FSW System meet all Intended On-orbit Operations

Capabilities?

 Acceptance Test – a Test Event

- Does the full set of System Validation Tests execute properly on the final
Flight Software Build?

31

Test Beds

“Test Like You Fly…”

 A flight like test environment emulates hardware and software
interfaces
- Attitude sensors, memory, A2D registers, …

 Allows all nominal data and off-nominal data to be injected at
the interfaces

 Not having a flight-like test environment is like:
- Asking a mechanical engineer to test their hardware with half the

launch loads
- Or, asking an electrical engineer to test their circuits with half the

voltage

32

Test Beds

 Flight-like test beds allow trouble shooting for on-orbit

problems in electronics and software without

experimenting on the flight hardware.

- Also allows for trouble shooting during I&T in parallel to

other processing.

33

FSW Testbed Elements

(1) Flight Data System

(2) Simulators & Tools

(3) T&C Ground System

ASIST

ITOS

34

FSW Testbed Requirements

 Exercise FSW on target hardware

- find any problems before I&T

 Self-documenting FSW Tests

- FSW Test Results Review/Analysis

 Repeatable Tests and Expected Results

 Enable FSW, Simulator Troubleshooting

35

FSW Testbed
Flight Electronics Options

 Commercial
- An electronic system that incorporates the same functionality as

the flight system but is built of commercial (off-the-shelf) hardware.

• Not rad-hard

• Allows software development team to start working early before more
flight-like hardware is available.

 Breadboard
- An electronic system that uses flight components, but is not

processed or packaged in a flight-like manner

• Example: FPGAs are mounted via sockets to allow reprogramming

 ETU (Engineering Test Unit)
- An electronic system that uses flight components and is processed

and packaged in a flight-like manner

36

Spacecraft GN&C Simulator

• High fidelity GN&C hardware interfaces
• Direct I/O or 1553 bus

• Models the on-orbit space environment
• Disturbances, Orbital relationships, Physics phenomenon

• Models behavior of actuator hardware due to FSW
commands

• Reaction Wheels, Torquer Bars, Thrusters

• Models sensor hardware inputs
• Gyroscopes, Star Trackers, Sun Sensors, Magnetometers, …

37

Spacecraft GN&C Simulator (Con’t.)

 Configurable for FSW test purposes

- Synchronize simulator time to FSW time

- Set initial orbit parameters

- Set initial GN&C flight hardware statuses

- Inject on-orbit hardware anomalies

38

FSW Sustaining Engineering

 What is FSW Sustaining Engineering?

- Modifying embedded software while it’s executing in space.

 Why change FSW in orbit?

- Compensate for a hardware problems

- Maintain science program

• Increase science capabilities

• Implement new mission requirements

• Increase mission lifetime

- Correct FSW bugs

- Simplify or automate operations

39

 Rossi X-Ray Timing Experiment (RXTE): star trackers lost track on

guide stars

- Just after launch it was determined that the star trackers would drop

lock on guide stars intermittently

- Developed and installed software that modified the star

tracker management code to perform a new directed search

for guide stars whenever a guide star is lost

 GPM: correct default magnetic torque rod parameters

- The default magnetic torque rod data processing parameters used

by the safehold algorithm were incorrect resulting in increased

momentum during safehold

- EEPROM defaults were changed for operational CPU as well as the

cold spare CPU

FSW Post-Launch Changes

Examples:

Observations and Lessons Learned

 FSW expert should be involved from early mission formulation stages
- Participate in ground/flight trades, hardware/software trades, mission cost estimates

 Formal Development and Test Processes do pay-off

 Detailed FSW Requirements are tremendously critical
- ‘Communicate’ exactly what FSW will do

- Create clear agreement among developers, testers, Systems Engineers, Ground
Operators, Hardware subsystem engineers

 Interface Control Documents are critical
- Must get detailed hardware and software interface definitions in writing and signed-off

 Formal and Informal Review of FSW Requirements, Designs, Code, Test
Scenarios, Test Results are all critical
- FSW specialists, Project Systems Engineers, Hardware Subsystem Analysts, Operations

- Walkthroughs find errors

- Formal Reviews (Standup Presentations) facilitate Project level resolution of FSW risks

- Avoid including design information in the requirements

 High Fidelity FSW Testbed is non-negotiable
- FSW must execute on flight-like hardware

- Simulations must accommodate ground validation of FSW

- Essential for post-launch maintenance of FSW

core Flight System

(cFS)

Applied Lessons Learned

History and Motivation
 Several years ago, Goddard Space Flight Center (GSFC) was tasked two

large in-house missions with concurrent development schedules (Solar

Dynamics Observatory (SDO), and Global Precipitation Measurement (GPM)

 GSFC was to design and build the spacecraft bus, avionics and flight

software and integrate these components with the spacecraft

 Without the staff for both projects and reduced budgets, we needed to find a

better way

- We had about a year to figure it out before staffing up

42

GSFC Flight Software Heritage

43

Architecture Goals

1. Reduce time to deploy high quality flight software

2. Reduce project schedule and cost uncertainty

3. Directly facilitate formalized software reuse

4. Enable collaboration across organizations

5. Simplify sustaining engineering (AKA. On Orbit FSW

maintenance) Missions last 10 years or more

6. Scale from small instruments to Hubble class missions

7. Build a platform for advanced concepts and prototyping

8. Create common standards and tools across the center

These goals were written in 2006 and have remained essentially

unchanged over the years!

44

History - Re-use in the Past

 In the past, little cost saving has been realized via FSW reuse

- No product line. Instead heritage missions were used as starting point
(Clone & Own)

- Changes made to the heritage software for the new mission were not
controlled

• New flight hardware or Operating Systems required changes throughout
FSW

• FSW Requirements were sometimes re-written which effects FSW and tests.

• FSW changes were made at the discretion of developer

• FSW test procedure changes were made at the discretion of the tester

• Extensive documentation changes were made for style

- Not all Products from heritage missions were available

- Reuse was not an formal part of development methods

- Reuse was not enforced

45

Heritage - What Worked Well

 Message bus

- All software applications use message passing (internal and external)

- CCSDS standards for messages (commands and telemetry)

- Applications were processor agnostic (distributed processing)

 Layering

 Packet based stored commanding (AKA Mission Manager)

 Vehicle FDIR based on commands and telemetry packets

 Table driven applications

 Critical subsystems synchronized to the network schedule

 Clean application interfaces

- Component based architecture (The Lollipop Diagram)

46

Heritage - What Worked Well

 Lots of innovation

- Constant pipeline of new and varied missions

- Teams worked full life cycle

• Requirements through launch + 60days

• Maintenance teams in-house and in contact with engineers early in

development

- Teams keep trying different approaches

• Rich heritage to draw from

 Keep the little “c” in the architecture

- A little core framework, as in low footprint, optimized for flight

systems

• Can we fit in a cubesat with 800KB flash and 2MB RAM?

47

Heritage - What Didn’t Work So Well

 Statically configured Message bus and tables

- Scenario: GN&C needs a new diagnostic packet

- How do I add a new one on orbit? (FAST mission example)

 Monolithic load (The “Amorphous Blob”)

- Raw memory loads and byte patching needed to keep bandwidth needs down

- Modeling tools did not support loadable objects

 Reinventing the wheel

- Mission specific “common” services (“Look , I’ve got a new and improved version!”)

• Need to “optimize” for each mission

 Application rewrites for different operating systems

 Claims of high reuse, but it still took the same effort on each mission

 Any changes rippled through all the tests, documents and development

artifacts

- All the development artifacts were also clone and own

48

Key Trades

49

Architecture Trades: Pub/Sub messaging

 Publish - just send data packets

- Destination agnostic

- Components can be configured to limit command sources

 Subscribe - any a component can receive/listen to any packet

 Peer to Peer network

- No master, stateless

• Component /node stops and data is un-subscribed automatically

- Robust/Fault tolerant (No master, GPM network example)

 Ground systems, and simulation applications look like any other component/node

- External interfaces can be gatewayed and firewalled

 Consultative Committee for Space Data Systems (CCSDS) packet format

- All the pieces (Identifier, time, sequence number, length) and extensible

- Works well with our existing ground systems

 Evaluated CCSDS Asynchronous Message Service (AMS) and COTS Network Data

Distribution Service (NDDS)

50

Architecture Trades: File Systems

 No GSFC missions had flown a file system

- Triana hadn’t launched

• Deep Space Climate Observatory, (DSCOVR) (Launch ~ January 2015)

 File systems are a well supported abstraction for data storage

 Standard file transfer mechanisms (TFTP, FTP, CFDP)

 Operating system support across most vendors

 Lots of resistance to added complexity

- VxWorks DOS and MER

 Result:

- Use file for code, data and recorder

- LRO used VxWorks file system with work arounds (stat example)

- Looking at JPL file system

• RAMFS – A Volatile Memory Filesystem

- POSIX compliant, SPIN® checked

- Funding RTEMS robust file system work 51

Architecture Trades: Linking

 Dynamic linking

- Requires symbols tables on board

- Code files (ELF) about double in size

- More efficient use of memory

- Can map around bad memory blocks (MMU required)

 Static linking

- No on board symbols

- Small code files (stripped ELF)

- Absolute location for each software component

- Need to add margin around component memory space

 Trade result:

- The architecture will support both

- Open source RTEMS now has support for both (GSFC funded)

52

Architecture

53

Concepts and Standards

• Layered Architecture

• Standard Middleware/Bus

• Standard Application Programmer Interface

for a set of core services

• Plug and Play Reusable Applications

• Command & Telemetry database

• Reuse Requirements Management

• Reuse Standards

• Reuse Repository

• Configuration Tool for Mission Users

• Development Tools

}

}

Core Flight Executive (cFE)

cFS Applications

Library & CM

Integrated Development

Environment

}

}

54

Layered Services

 Each layer and service has a standard API

 Each layer “hides” its implementation and
technology details.

 Internals of a layer can be changed --
without affecting other layers’ internals and
components.

 Provides Middleware, OS and HW platform-
independence.

Files, Tables

55

56

Standard Middleware Bus

Publish/Subscribe

 Components communicate over a standards-based
Message-oriented Middleware/Software Bus.

 The Middleware/ Software Bus uses a run-time
Publish/Subscribe model. Message source has no
knowledge of destination.

 No inherent component start up dependencies

Impact:

 Minimizes interdependencies

 Supports HW and SW runtime “plug and play”

 Speeds development and integration.

 Enables dynamic component distribution and
interconnection.

Publish/Subscribe: loosely-coupled, standard interface, data

formats, protocols, & component independence

Legacy: Tightly-coupled, custom interfaces- data formats - protocols,

internal knowledge, component interdependence

Standard Application Programmer Interface
(API)

Application Programmer Interfaces

 cFS services and middleware communication bus has
a standardized, well-documented API

 An abstracted HW component API enables
standardized interaction between SW and HW
components.

Impact:

 Allows development and testing using distributed
teams

 With the framework already in place, applications can
be started earlier in the development process

 Can do early testing and prototyping on desktops
and commercial components

 Simplifies integration API supplies all functions and data components

developers need.

57

cFS Overview

cFS

App

• Core Flight System (cFS)

– A Flight Software Architecture
consisting of an OS
Abstraction Layer (OSAL),
Platform Support Package
(PSP), cFE Core, cFS
Libraries, and cFS
Applications

• core Flight Executive (cFE)

– A framework of mission
independent, re-usable, core
flight software services and
operating environment

– Layered on top of the OSAL
and PSP

• Each element is a separate
loadable file

58

cFE

App

1

cFE

App

1

cFE

App

1

cFE

App

1

cFS Software Layers and Components

Real Time OS

OS Abstraction API

cFE API

cFS

Library
Mission

Library

cFE

Apps

(x5)

cFS

App

1

cFS

App
n(13)

PROM Boot FSW

Mission and cFS

Application Layer

Mission and cFS

Library Layer

cFE Core

Layer

Abstraction

Library Layer

Mission Developed

NASA Maintained

3rd Party

RTOS / BOOT

LayerReal Time OS
Board Support

Package

cFE Core
µcFE

Core

OS Abstraction

Linux

OS Abstraction

RTEMS

OS Abstraction

VxWorks

In development

cFE Platform Support

Packages

cFE PSP API

Time & Space Partitioning

cFE Core

Partial open source

Software

Bus

Network

Mission

App 2

Mission

App 1
Mission

App N

59

Flight Software “App” Store

60

Inter-task Message Router (SW Bus)

Event
Services

Stored

Commanding

CFDP File

Transfer

Software

Scheduler

Housekeeping

Manager

Executive
Services

Time
Services

File
Manager

CommandsCFS Applications

Memory

Dwell

Real-time Telemetry

Communication

Interfaces

Mission Applications

1553 Bus

Support

File downlink

Software

Bus

Instrument

Manager

Command

Ingest

Telemetry

Output

Checksum

1553

Hardware

Memory

Manager

Data
Storage

Mass

Storage

File System

Table
Services

Limit

Checker
Space

Wire

Instruments

Core Services/Applications

Flight Missions (Class B)

 LRO, first mission to use cFE

- Launched June 18, 2009

 GPM, most recent to use cFS

- Launched February 14, 2014

61

A Recent Success
Observatory for Planetary Investigations from the Stratosphere (OPIS)

10/08/2014 10:02am EST 10/08/2014 12:36pm EST
62

 Baseline command and data handling software was up
an running on the target platform within a month

 OPIS launched 6 months later! (Class D mission)

Lessons

 Even in space we can use product line concepts

 Code reuse is not enough!

 Most of the software artifacts must be reusable

- Requirements

- Documentation

• Software user’s guides

• Operational user’s guides

- Test procedures

• Automated Unit tests

• Automatized Functional tests

- All of the above need to be parameterized!

 Ground systems components should have a similar architecture

- Many flight software components have a corresponding ground system component

63

Lessons
 Social aspects:

- Project engineers must see value in it

- Informal engineer to engineer interactions worked well

- Stakeholders were engaged early

- Engineers across projects helped shape the architecture

- Resistance to change is hard to overcome

• Personnel with less flight system experience quickly embraced the

architecture and product line

- When everyone is working with similar software and tools, people can

and do help each other

• Individual engineers started writing tools and wanted to share them

- It’s important to say why the architecture is the way it is

• Heritage analysis is documented and a formal process

- As the originator of the cFS, we had to get out of a “local” mindset, give

up some control and let it be a community effort

- Attending conferences and workshops is important

64

Lessons

 Need a well defined set of Quality attributes to evaluate
future architectural decisions

- There are too many good suggestions for enhancements,
we needed an objective way to evaluate them

- Defined quality attributes have:

• Description

• Aspect of

• Requirement

• Rationale

• Evidence of verification

• Tactic to achieve

• Project specified

- Prioritization

- Intended Variation

- The available literature did not seem to address this issue
65

Lessons

 The product line naturally incorporates best practices and mission

experience

 Lots of support tools independently developed

- Each user created an electronic data sheet tool

• Tool to generate XML interface description from header files

• Tool to generate header files from the XML

- Code templates for reuseable components

• Auto generated from IDE or command line

• /* Put your code here */ Comments

 Auto generation of components from software models

 Variability analysis and designs seems to take a few projects to get it right

(So plan for it)
1. Try to write it for reuse

2. Deploy it and find out what you did wrong

3. Update and release it again

66

Lessons

 Training and help must be available early

- If they don’t understand it, people will avoid it

 Easy to get a new developer started

- Deploying virtual machines (VM’s) with the environment and all the tools installed

 Support open source software (Linux, GNU tools, …)

 Whenever possible, make it open source!

- OSAL at http://sourceforge.net/projects/osal/

- cFE at http://sourceforge.net/projects/coreflightexec/

- Plans to release suite of cFS applications

- GSFC, Spring 2015)

- Plans to release additional tools and the Integrated Development
Environment (Eclipse based)

- Plans to release AR Drone Quadricopter software kit

- JSC, Summer 2015)

67

Building a cFS

Community

68

CFS Product Line Timeline

69

SAMPEX

(1992 launch)

1990 2005 2007

LRO

(2009 launch)

(Co-develop cFE)

P
ro

d
u
c
t
L
in

e
 M

a
tu

ri
ty

SDO

(2010 launch)

Clone & Own

2012

cFE available

from IPP Office

CFS Apps

available

from IPP Office

2010

GPM

(2014 launch)

(Co-develop CFS)

2011

cFE

Open Source

2000
GSFC

Consolidates

FSW Orgs

First NASA wide

Community workshop

2014

Apps

App Libraries

OS Abstractions PSPs

Applications

cFE Apps Core Lab Apps

Ground Systems

Development

Tools & APIs

Unit Test Performance

TableEDS

ASIST

ITOS COSMOS

App Library

Executive

Platform

Abstraction

cFE

cFE API

OS Abstraction

API

Platform Support

Package API

NASA

Product

Management

cFS Project Controlled External to cFScFS Community Member Controlled

cFS Community

Government

Industry

Academia

International

User Support

Users: Feedback, Feature Requests, Bug Reports

Contributors: Bug Fixes, Verification

Members

The CFS architecture, originally developed to promote GSFC project collaboration and

cost savings, has now become an Agency wide collaboration and cost savings resource

cFS use at NASA

71

LRO

LADEE

GPM

LWS/RBSP

MMS

Morpheus

Solar Probe Plus

Mighty Eagle Lander

Space Suits

LCRD

ORION

CFS Users Across the Globe

72

JPL – Evaluating

architecture for robotic

missions and ESTO

missions

Commercial -

Moon Express

(Lunar X-Prize)

DOD and US industry

•Potential for standardization though

the CCSDS and the Space Universal

MOdular Architecture (SUMO) team

sponsored by Office of the Director

of National Intelligence

JSC-Used Successfully on

Morpheus. Using on AES

projects , Habitats,

Waypoint, Certified for

Class A (human rated).

GRC – CPST and

Advanced suit

KSC-Evaluating

for AES, sounding

rockets and UAV’s

MSFC- Mighty

Eagle Lander,

AES RESOLVE

APL - RBSP. Proposing

use on Solar Probe, DoD

programs.

LRO, MMS, GPM,

NICER, OPIS and

many others.

ARC- LADEE

Kirtland AFB –

Onboard Autonomous

Planning System

European Space Research and Technology Centre

JAXA’s Engineering Digital Innovation Center

Next generation software architecture research

Korea Aerospace Research Institute

Lunar program

cFS Use Outside of NASA

 Korean Aerospace Research Institute (KARI) is planning to use cFS for

South Korea’s Lunar program

- Working to create cFS DTN application to use between orbiters and

rovers

- Coordination through NASA HQ

 JAXA’s Engineering Digital Innovation (JEDI) Center using cFS for

prototyping next generation flight software architecture.

 AFRL plan to use cFS as baseline for “development of a common platform

for the control architecture of small/medium UAVs”

73

 CCSDS Management Council has proposed

creating a Reference Architecture Orange

Book based on cFS

 Moon Express, Masten Space Systems, and

Astrobotic Tech. using cFS for the Google

Lunar X Prize

cFS Contributions From Other

Organizations

74

Organization Contribution Notes

Johnson Space Center Trick Simulator integration, Enhanced Build

environment, Training materials, ITOS integration,

multiple new platforms

Johnson Space Center Class A certification of OSAL, cFE and selected

cFS applications

Use in Orion Backup flight computer,

video processing unit, and Advanced

Space Suit

Johnson Space Center Enhanced Unit tests and increased code

coverage, new performance analysis tool

Glenn Research Center Code Improvements, modern build environment

(cmake), Electronic Data Sheet integration

Ames Research Center cFS community configuration management

services, continuous integration build services

Ames Research Center Simulink Interface Layer for auto-coding cFS

applications

JHU/APL Multi-Core cFE/OSAL port Joint IRAD with GSFC, will be used for

GSFC MUSTANG flight processor card

DARPA/Emergent Fractionated Spacecraft / Distributed Mission cFS

applications

Formation Flying

Part of DARPA F6 project, they hope to

make the apps available as open source

Interns and misc contributors cFS development tools are being created and

shared by many organizations

Miscellaneous bug fixes reported via open source

sites.
August 2015

Technical Enhancements

 Integrated Development Environment (IDE)

 Automated tests (unit, functional, build…)

 CCSDS EDS specifications for cFS components

 Integrate Multi-core support into OSAL and cFE

 Integrate/Merge ARINC653 port into OSAL and
cFE

 Integrate Dellingr Cubesat FreeRTOS OSAL Port

 Improve scheduler time synchronization

 Expand SB namespace beyond 211

 Lab upgrades

- RTEMS 4.11 updates

- VxWorks 6.9 updates

- RAD750 simulator

- MPC8377E: PowerQUICC II Pro Processor test
beds

- LEON3 test bed

- MCP750 test bed

Operational Enhancements

 Formalize cFS user community

 Web based app store

75

Ongoing Activities

