5,539 research outputs found

    Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators

    Full text link
    We investigate the optical properties of one-dimensional (1D) dimerized Mott insulators using the 1D dimerized extended Hubbard model. Numerical calculations and a perturbative analysis from the decoupled-dimer limit clarify that there are three relevant classes of charge-transfer (CT) states generated by photoexcitation: interdimer CT unbound states, interdimer CT exciton states, and intradimer CT exciton states. This classification is applied to understanding the optical properties of an organic molecular material, 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its photoinduced transition from the dimerized spin-singlet phase to the regular paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is the interdimer CT exciton state and the second lowest state is the intradimer CT exciton state.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Fractional S^z excitation and its bound state around the 1/3 plateau of the S=1/2 Ising-like zigzag XXZ chain

    Full text link
    We present the microscopic view for the excitations around the 1/3 plateau state of the Ising-like zigzag XXZ chain. We analyze the low-energy excitations around the plateau with the degenerating perturbation theory from the Ising limit, combined with the Bethe-form wave function. We then find that the domain-wall particles carrying Sz=±1/3S^z=\pm 1/3 and its bound state of Sz=±2/3S^z=\pm 2/3 describe well the low-energy excitations around the 1/3 plateau state. The formation of the bound state of the domain-walls clearly provides the microscopic mechanism of the cusp singularities and the even-odd behavior in the magnetization curve.Comment: 13 pages, 15 figure

    Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains

    Full text link
    A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ\lambda and magnetic field B. To demonstrate the accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe Ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first 7 lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2-spin and 4-spin correlation functions are calculated, and the results are compared with those obtained by Bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ\lambda space is determined with help of the Roomany-Wyld RG finite-size-scaling. The results are in good agreement with those obtained by the level-spectroscopy method.Comment: 12 pages, 14 figure

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Application of the density matrix renormalization group method to finite temperatures and two-dimensional systems

    Full text link
    The density matrix renormalization group (DMRG) method and its applications to finite temperatures and two-dimensional systems are reviewed. The basic idea of the original DMRG method, which allows precise study of the ground state properties and low-energy excitations, is presented for models which include long-range interactions. The DMRG scheme is then applied to the diagonalization of the quantum transfer matrix for one-dimensional systems, and a reliable algorithm at finite temperatures is formulated. Dynamic correlation functions at finite temperatures are calculated from the eigenvectors of the quantum transfer matrix with analytical continuation to the real frequency axis. An application of the DMRG method to two-dimensional quantum systems in a magnetic field is demonstrated and reliable results for quantum Hall systems are presented.Comment: 33 pages, 18 figures; corrected Eq.(117

    Laser treatment in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel

    A novel fragment derived from the β chain of human fibrinogen, β43–63, is a potent inhibitor of activated endothelial cells in vitro and in vivo

    Get PDF
    Background: Angiogenesis and haemostasis are closely linked within tumours with many haemostatic proteins regulating tumour angiogenesis. Indeed we previously identified a fragment of human fibrinogen, fibrinogen E-fragment (FgnE) with potent anti-angiogenic properties in vitro and cytotoxic effects on tumour vessels in vivo. We therefore investigated which region of FgnE was mediating vessel cytotoxicity. Methods: Human dermal microvascular endothelial cells (ECs) were used to test the efficacy of peptides derived from FgnE on proliferation, migration, differentiation, apoptosis and adhesion before testing the efficacy of an active peptide on tumour vasculature in vivo. Results: We identified a 20-amino-acid peptide derived from the β chain of FgnE, β43–63, which had no effect on EC proliferation or migration but markedly inhibited the ability of activated ECs to form tubules or to adhere to various constituents of the extracellular matrix – collagen IV, fibronectin and vitronectin. Furthermore, our data show that β43–63 interacts with ECs, in part, by binding to αvβ3, so soluble αvβ3 abrogated β43–63 inhibition of tubule formation by activated ECs. Finally, when injected into mice bearing tumour xenografts, β43–63 inhibited tumour vascularisation and induced formation of significant tumour necrosis. Conclusions: Taken together, these data suggest that β43–63 is a novel anti-tumour peptide whose anti-angiogenic effects are mediated by αvβ3

    Photoexcitation-Energy-Dependent Transition Pathways from a Dimer Mott Insulator to a Metal

    Full text link
    We theoretically study pump-photon-energy-dependent pathways of a photoinduced dimer-Mott-insulator-to-metal transition, on the basis of numerical solutions to the time-dependent Schr\"odinger equation for the exact many-body wave function of a two-dimensional three-quarter-filled extended Peierls-Hubbard model. When molecular degrees of freedom inside a dimer are utilized, photoexcitation can weaken the effective interaction or increase the density of photocarriers. In the organic dimer Mott insulator, Îş \kappa -(BEDT-TTF)2_2Cu[N(CN)2_2]Br, the intradimer and the interdimer charge-transfer excitations have broad bands that overlap with each other. Even in this disadvantageous situation, the photoinduced conductivity change depends largely on the pump photon energy, confirming the two pathways recently observed experimentally. The characteristic of each pathway is clarified by calculating the modulation of the effective interaction and the number of carriers involved in low-energy optical excitations. The pump-photon-energy-dependent pathways are confirmed to be realized from the finding that, although the effective interaction is always and slowly weakened, the introduction of carriers is sensitive to the pump-photon energy and proceeds much faster.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
    • …
    corecore