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Abstract. We present a new class of tensor network states that are specifically

designed to capture the electron correlation of a molecule of arbitrary structure. In

this ansatz, the electronic wave function is represented by a Complete-Graph Tensor

Network (CGTN) ansatz which implements an efficient reduction of the number of

variational parameters by breaking down the complexity of the high-dimensional

coefficient tensor of a full-configuration-interaction (FCI) wave function. We

demonstrate that CGTN states approximate ground states of molecules accurately by

comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization

is not biased towards any reference configuration in contrast to many standard quantum

chemical methods. This feature allows one to obtain accurate relative energies between

CGTN states which is central to molecular physics and chemistry. We discuss the

implications for quantum chemistry and focus on the spin-state problem. Our CGTN

approach is applied to the energy splitting of states of different spin for methylene

and the strongly correlated ozone molecule at a transition state structure. The

parameters of the tensor network ansatz are variationally optimized by means of a

parallel-tempering Monte Carlo algorithm.
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1. Introduction

Over the last two decades, we have witnessed the rise of the Density Matrix

Renormalization Group (DMRG) algorithm [1–3], which had a tremendous impact

on the fields of condensed matter physics [4] and quantum chemistry [5, 6]. In 1995,

Rommer and Östlund showed that the DMRG wave function [7, 8] can be described

by a Matrix Product State (MPS) [9, 10] which is – qualitatively speaking – a one-

dimensional chain of rank-3 tensors. The understanding of the structure of the DMRG

wave function stimulated further developments to efficiently represent ground states of

strongly correlated systems.

The work of Affleck, Kennedy, Lieb and Tasaki [11] on finitely correlated states

provided the foundations of a new family of states, the tensor network states. The

basic idea of tensor network states is to approximate ground-state wave functions of

strongly correlated systems by spanning only the relevant part of the Hilbert space of

the system of interest [12]. In the case of a limited amount of entanglement in the

system, only a subspace of the full Hilbert space needs to be considered. This low-

entanglement subspace can then be efficiently approximated by tensor network states

tailored to represent the entanglement structure of the system.

In this article, we study a new class of approximations, which we denote Complete-

Graph Tensor Network (CGTN) states, to represent electronic wave functions of

molecular systems described by a complete pair-entanglement network of one-particle

states (molecular orbitals). A CGTN state provides an efficient and compact description

in terms of variational parameters because the 2k expansion parameters for the many-

electron states that can be constructed from k spin orbitals are approximated by the

entries of a matrix symmetric in the orbital indices, i.e., only [(k2 − k)/2 + k] × q2 =

k(k+1)/2×q2 parameters are needed in our CGTN approach (where q is the dimension of

the one-particle Hilbert space, i.e., q=2 for spin orbitals). Of course, a detailed numerical

analysis of the accuracy to approximate a total electronic state is required for this

reduced parameter set. Note that an artificial one-dimensional ordering of the molecular

orbitals for the construction of the total basis states, which can create convergence

problems to local energy minima as in the quantum chemical DMRG algorithm [13,14],

is explicitly circumvented.

This article is organized as follows: In Section 2, we give a detailed introduction into

the application of tensor network states for molecules. Afterwards, the CGTN ansatz is

described in Section 3. In Section 4, the procedure for the variational optimization of

the CGTN via parallel-tempering Monte Carlo is presented. The vertical spin splittings

of methylene and of ozone are reported in Section 5.
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2. Novel Representations of Quantum-Many Body States

The electronic Hamiltonian in second quantization reads in Hartree atomic units

(’h̄ = me = e = 4πǫ0 = 1’)

Ĥel =
∑

i,j
σ

hija
†
iσajσ +

1

2

∑

i,j,k,l

σ,σ′

Vijkla
†
iσa

†
jσ′akσ′alσ, (1)

which contains one-electron integrals hij over spatial orbitals φi(r) given in non-

relativistic theory by [15]

hij =
∫

φ∗
i (r)

(

−
1

2
∇2 −

∑

I

ZI

rI

)

φj(r) d
3r, (2)

with nuclear charge number ZI of atomic nucleus I and electron–nucleus-I distance

rI = |r−RI |. The nucleus–nucleus repulsion term is suppressed for the sake of brevity.

The two-electron integrals Vijkl are defined as

Vijkl =
∫ ∫ φ∗

i (r1)φ
∗
j(r2)φk(r2)φl(r1)

r12
d3r1 d

3r2. (3)

The Hamiltonian and its ingredients may also be written in terms of spin orbitals

φi(x) = φi(r)σ, where σ is a spin-up or spin-down spin eigenfunction. Coordinate

x then denotes both spatial and spin variables.

The eigenstate of the electronic Hamiltonian is the total electronic wave function

|Ψ
(N)
A 〉 if we restrict ourselves to N electrons. In quantum chemistry, the full-

configuration-interaction (FCI) expansion of the total electronic wave function in terms

of spin-adapted configuration state functions (SU(2) eigenfunctions) exactly solves the

non-relativistic time-independent Schrödinger equation in a given one-particle basis

of orbitals. The FCI wave function can be understood as a linear combination of

occupation number vectors in the direct-product basis of the one-particle Hilbert spaces.

Occupation number vectors are generated by distributing N electrons among the k

orbitals. The FCI wave function of total electronic state A then reads

|Ψ
(N)
A,FCI〉 =

q
∑

n1n2...nk

C(A)
n1n2...nk

|n1n2 . . . nk〉 (4)

where C(A)
n1n2...nk

are the (F)CI expansion coefficients of state A and |n1n2 . . . nk〉 denotes

an occupation number vector. Note that we restrict the sum in (4) to those vectors that

represent N electrons and thus span the N -particle Hilbert space. The sums run over

the dimension q of the local Hilbert spaces of the set of orbitals {1, 2, . . . , k}. For spin

orbitals holds q = 2, the occupied and unoccupied one-electron state {|1〉, |0〉}. In the

case of spatial orbitals, the basis of the local Hilbert space {|ni〉} consists of four states,

{|〉, |↑〉, |↓〉, |↑↓〉}. Each occupation number vector |n〉 ≡ |n1n2 . . . nk〉 is constructed as

a direct product from the states of the local Hilbert spaces

|n〉 ≡ |n1n2 . . . nk〉 = |n1〉 ⊗ |n2〉 ⊗ . . .⊗ |nk〉. (5)
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The number of variational CI parameters required to describe an electronic state (or

a quantum state in general) grows exponentially with system size, which is a direct

consequence of the underlying tensor-product structure of the Hilbert space.

The exponentially growing number of parameters in the FCI ansatz renders it

unfeasible for molecules containing more than a few atoms. Nevertheless, because of the

nature of the interactions we may hope that there exists an efficient parametrization of

a class of variational wave functions such that the low-energy sector of the electronic

Hamiltonian is described with sufficient accuracy [12, 16–19]. In addition, the huge

body of numerical evidence compiled during the past forty to fifty years in quantum

chemistry demonstrates that various truncated configuration-interaction expansions are

efficient and reliable to approximate an electronic state [20]. This latter observation

indicates that provided we find an efficient parametrization of all CI coefficients in the

FCI expansion, we do not need to sample all occupation number vectors but only the

most important ones for the total electronic energy. Otherwise, the procedure would be

as unfeasible for large molecules as the FCI approach itself is.

A way of finding an efficient parametrization of states is to approximate the high-

dimensional coefficient tensor C(A)
n1n2...nk

by a tensor network. Tensor network states

build a new class of variational wave functions. The high-dimensional coefficient tensor

is broken down into low-rank tensors which are arranged on an arbitrary network

[12, 21–27]. The primary advantage of tensor network states compared to the standard

FCI expansion is the reduced number of variational parameters which approximately

scales as O(kχp) where k is the number of orbitals, χ the bond dimension and p is the

rank of the tensor. Tensor network states can be designed in a way to directly map the

entanglement of the underlying system [28, 29].

The MPS constructed by the DMRG algorithm are the simplest example of tensor

network states for one-dimensional systems [24, 26, 30]. An MPS with open-boundary

conditions is defined as

|Ψ
(N)
MPS〉 =

∑

n1n2...nk

A1[n1]A2[n2] · · ·Ak[nk] |n1n2 . . . nk〉 (6)

where the rank-3 tensors Ai are written asm×m matrices Ai[ni] for a specific local state

ni [9,31–33]. Note that A1[n1] and Ak[nk] are vectors because open-boundary conditions

are applied and that we have dropped here and in the following the state index A

for the sake of brevity. The DMRG algorithm optimizes the tensors by keeping the

eigenvectors of the reduced density matrix corresponding to the dominant eigenvalues

(see also McCulloch [34] and Verstraete et al. [12] who discussed the additional flexibility

when using both wave function and Hamiltonian in MPS representation). Chan et al.

and Hachmann et al. rephrased the quantum chemical DMRG algorithm consistently

in terms of matrix product states [5, 35].

Other variational families of states have been proposed for strongly correlated

systems which can be efficiently contracted for Variational Monte Carlo calculations.

These include string-bond states (SBS) [36] and subsequently Entangled-Plaquette

States (EPS) [37] and Correlator Product States (CPS) [38]. In this work, we will
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build upon an extension of these families to treat the full electronic Hamiltonian for

molecular systems. Our extension is twofold: (i) SBS, EPS and CPS have only been

applied to local spin Hamiltonians so far, while we aim at the full electronic Hamiltonian

as given in (1) and (ii) we include all pair correlations of the one-electron basis states

and do not impose any restriction on these pairs.

3. Complete-Graph Tensor Network Ansatz

In the case of an MPS parametrization of a wave function, sites — or orbitals in

a quantum chemical context — have to be mapped on a suitably chosen lattice.

Then, correlations are transmitted over the one-dimensional lattice by the size of

the matrices occurring in the matrix product state. Naturally, this ansatz is more

suitable for molecular systems with an inherent linear structure rather than for those

with long-range correlations. Orbital ordering on this lattice is then crucial for the

convergence of the variational optimization technique employed, e.g., for the DMRG

algorithm [13, 14]. Hence, an MPS state might be difficult to optimize for a general

molecule of arbitrary structure. By contrast, in the CGTN approach to be introduced

now non-local correlations are directly embedded into the non-linear tensor network

ansatz. The Complete-Graph Tensor Network replaces the high-dimensional coefficient

tensor in the FCI ansatz of (4) by a network of tensors that connects all orbitals with

each other,

|Ψ
(N)
CGTN〉 =

q
∑

n1n2...nk

k
∏

α

∏

β≤α

f
nαnβ

αβ |n1n2 . . . nk〉 (7)

where f ≡ {f
nαnβ

αβ } represents a rank-[k(k+ 1)/2] tensor which depends on the orbitals

α, β ∈ {1, 2, .., k}. The local states of the spin orbitals nα, nβ can either be occupied

or unoccupied {|1〉, |0〉} (i.e., for spin orbitals q=2). The sum runs over all possible

occupation number vectors |n〉 in the N -electron Hilbert space (in principle, in the

full Fock space) with the correct number of electrons, projected spin, and point-group

symmetry.

The above ansatz is built on the key idea that every orbital is “connected” with

every other orbital. Hence, all CI coefficients are constructed from such pair correlations

optimized for all orbitals. The number of variational parameters in our ansatz depends

on the number of spin orbitals k and on the bond dimension d and is given as 1
2
k(k+1)q2

where d = 2. Comparing this to the number of parameters in the FCI ansatz which

scales as O(2k) for spin orbitals, it is clear that CGTN states are much more efficient

in terms of the number of variational parameters. It is important to emphasize that

we do not need to specify any reference configuration like in most post-Hartree–Fock

methods. Our ansatz comprises naturally all basis states which can be generated in the

Hilbert space of interest. Thus, although the CI coefficients are approximated by the

reduced set of CGTN parameters, we can expect that CGTN calculations are (at least

approximately) size-consistent.
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Compared to the tensor networks suggested so far for local (spin) Hamiltonians (see

last section), CGTN states form a subspace of the very general CPS parametrization,

which is so general that it basically covers any non-hierarchical tensor network

approximation of a wave function. In particular, they correspond to two-site CPS

including all long-range correlation effects. A similar parametrization of a simple

variational wave function was also chosen by Huse and Else to describe ground states

of frustrated quantum spin systems [39]. However, the question arises how accurate

this parametrization is for the non-local electronic Hamiltonian of (1), which shall be

investigated in this work. Although undesirable from the point of view of feasibility,

inaccuracies may be cured by also including three-orbital, four-orbital, ... correlations as

is possible with the general CPS ansatz. Thus, we may easily increase the flexibility of

CGTN states by including higher-order correlators (summing over three or more indices

instead of two) or by increasing the bond dimension of the tensors from scalar values

to matrices. In this work, the number of pair-correlation parameters is determined by

the definition of an active orbital space, which is a standard procedure in quantum

chemistry [20]. The next step is to variationally optimize the non-linear tensor network

ansatz.

4. Variational Optimization

We apply a variational Monte Carlo scheme to optimize the CGTN state. In the context

of tensor-network states, this was demonstrated by Schuch et al. [36] and by Sandvik

and Vidal [40] for local Hamiltonians. We augment the optimization with a parallel

tempering scheme. The energy of the system is written as an expectation value of the

Hamiltonian operator over an N -electron wave function |Ψ
(N)
CGTN〉,

EFCI =
〈Ψ

(N)
FCI|Ĥel|Ψ

(N)
FCI〉

〈Ψ
(N)
FCI|Ψ

(N)
FCI〉

≤
〈Ψ

(N)
CGTN|Ĥel|Ψ

(N)
CGTN〉

〈Ψ
(N)
CGTN|Ψ

(N)
CGTN〉

(8)

which delivers an upper bound to the exact FCI energy in a given one-particle basis.

For the sake of brevity, the tensor product in front of the occupation number vector

in our CGTN ansatz is abbreviated by a scalar function CI ,

CI = 〈I|Ψ
(N)
CGTN〉 =

k
∏

α

∏

β≤α

f
IαIβ
αβ (9)

which corresponds to a (unnormalized) CI-like coefficient for a given occupation number

vector |I〉 in configuration-interaction theory,

|Ψ
(N)
CGTN〉 =

∑

I

CI |I〉 (10)

Inserting (10) into the normalization integral in the denominator of (8) yields the well-

known CI-like normalization condition

〈Ψ
(N)
CGTN|Ψ

(N)
CGTN〉 =

∑

IK

C⋆
ICK〈I|K〉 =

∑

IK

C⋆
ICKδIK =

∑

I

C2
I (11)
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where the sum takes the square of the weights over all possible basis states in the Hilbert

space with correct symmetry.

We now insert (11) into (8) to get an approximation to the energy expectation value

of the electronic Hamiltonian for our wave function ansatz and then substitute the ket

in the denominator by (10),

Eapprox =

∑

I CI〈Ψ
(N)
CGTN|Ĥel|I〉

∑

I C
2
I

. (12)

After rewriting this sum to become

Eapprox =

∑

I

C2
I

〈Ψ
(N)
CGTN|Ĥel|I〉

CI
∑

I

C2
I

(13)

we can perform Monte Carlo sampling with strictly non-negative probabilities C2
I . We

define an energy estimator E(I) as a function of the occupation number vector |I〉 that

reads

E(I) ≡
〈Ψ

(N)
CGTN|Ĥel|I〉

CI

=
∑

J

CJ

CI

〈J |Ĥel|I〉 (14)

For a given |I〉, the number of basis states 〈J | contributing to this sum is bounded by

the number of terms in the Hamiltonian. Since the occupation number vector |I〉 is not

an eigenstate of the Hamiltonian, Ĥel|I〉 produces a linear combination of occupation

number vectors with coefficients constructed from the one-electron and two-electron

integrals occurring in the Hamiltonian. For a molecule, the sum over J can therefore be

performed exactly.

A variational optimization is in general not guaranteed to converge to a global

minimum — instead, it may be trapped in local minima and yield incorrect results.

In our ansatz, the highly non-linear structure and the complex energy landscape of

molecules make such trapping quite likely. In particular, the approach of Sandvik

and Vidal [40] which applies gradient information to propose a new set of variational

parameters turns out to be unreliable in our case. We therefore use a stochastic

optimization procedure that works entirely without gradient information. To each

choice of variational parameters f = {f
nαnβ

αβ }, we can assign an electronic energy E(f ).

After introducing an artificial temperature T (actually, a parameter with the dimension

of an energy; here measured in Hartree units, Eh), we can sample the continuous

variables f following a canonical ensemble with the weight of a configuration given by

exp(−E(f )/T ). The limit T→0 Eh will yield the desired ground state of the molecule.

It should be emphasized that this ensemble does not correspond to a physical ensemble

at any finite temperature.

The advantage of this approach is that we can easily control the optimization

procedure by tuning the parameter T . While an accurate simulation of the ground

state is only possible for T→0 Eh that may get stuck in local minima, a simulation at

larger T may easily surmount high energy barriers between local minima. We therefore
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use a parallel tempering/replica exchange scheme [41] where simulations are run at

several temperatures simultaneously. After a certain number of updates, replica i and

replica i+ 1 at neighbouring temperatures are exchanged with a probability

p ((Ti, Ei) ↔ (Ti+1, Ei+1)) = min{1, exp (−∆E/∆T )} (15)

with ∆E = Ei+1 − Ei and ∆T = Ti+1Ti/(Ti − Ti+1). The set of temperatures has

to be chosen in such a way that the lowest temperatures are close to T=0 Eh to

yield information about the ground state and the highest temperatures are sufficient

to overcome energy barriers. Hence, the choice depends very much on the specific

problem at hand. It might be desirable to dynamically optimize the temperatures for

some specific applications [42], but for the purpose of this work, we restrict ourselves

to a static choice of the temperatures. For a temperature set of M temperatures in the

range [T1, TM ], we choose for the remaining M − 2 temperatures Tl with T1 < Tl < TM :

Tl = T1

(

exp
lnTM − lnT1

M − 1

)l−1

, l = 1 . . .M. (16)

It is, of course, possible to finally take the state obtained from the above procedure as

an input state for a direct optimization using gradient information, which may yield

better accuracy close to the minimum.

5. Results

Our primary goals in this work are: (i) to analyze the CGTN ansatz for the description

of electronic energies and CI coefficients of molecules and (ii) to show that we can

optimize the CGTN ansatz by means of a variational parallel-tempering Monte Carlo

algorithm. Our test molecules are methylene and ozone. For these small molecules

we do not need to apply sampling of the occupation number vectors since the sum in

(13) can be carried out explicitly. Hence, we use the above-described sampling scheme

to sample the f coefficients only. As a consequence, we avoid the sampling error of

the occupation number vectors and thus obtain a reliable picture of the quality of our

CGTN ansatz.

5.1. Singlet and Triplet Polyatomic Radicals: The Methylene Example

The accurate calculation of different spin states is of great importance to chemistry; in

particular, for chemical reactions in which a spin-crossing event occurs [43–51]. There

is, however, no way to tell our optimization algorithm how to converge directly to

the desired spin state. The optimization algorithm might get easily trapped in local

minima corresponding to a spin-contaminated total state. One possible solution would

be to sample over the basis of spin-adapted configuration state functions (CSF) which

can easily be constructed as linear combinations of occupation number representations

using Clebsch–Gordon coefficients producing a SU(2) eigenstate of the Hamiltonian

with a well-defined total spin. In that case, however, the complete occupation number
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vector basis must be constructed. Another solution, which we need to employ in our

second example below, is the application of a level-shift operator as used, for instance,

for the DMRG algorithm in [52]. The concept of the level-shift operator can be easily

implemented in the current optimization scheme. The idea is to substitute the original

Hamiltonian by an effective shifted Hamiltonian where the unwanted states with a higher

multiplicity are shifted up in energy. The lowest energy state of the total system is then

a spin-pure state with the correct total spin. The shifted Hamiltonian is written as

Ĥshifted = Ĥ + ǫŜ−Ŝ+ = H + ǫ
(

Ŝ2 − Ŝ2
z − Ŝz

)

(17)

where we add the product of the spin ladder operator to the original Hamiltonian and

ǫ is a positive constant. This prevents the occurrence of states which possess the same

projected spin but have a different total spin.

We choose methylene as our test molecule, for which we determine the spin splitting

of the singlet and triplet states. Methylene is the smallest polyatomic radical featuring a

triplet ground state and several low-lying singlet states where strong correlations effects

are present [53]. We are particularly interested in the energies of the triplet ground state

and the lowest-lying singlet state with point-group symmetries B1 and A1, respectively.

In preparatory calculations, we calculated the one-electron and two-electron

integrals as well as complete-active-space (CAS) self-consistent-field (SCF) reference

energies with the Molpro program package [54]. The orbitals have been expanded

in Dunning’s cc-pVTZ basis set [55, 56]. The electronic energies of the singlet and

triplet state of CH2 were studied at a C–H bond distance of 1.0753 Å and an H–

C–H angle of 133.82 degrees in C1 symmetry as reported in [53]. The integrals for

the CGTN calculations are calculated over the natural orbitals of the corresponding

CASSCF calculation. Within this theoretical setup, the CGTN calculations can be seen

as CASCI-equivalent calculations, where the CI weights are iteratively improved rather

than obtained from an expensive diagonalization step. For the parallel-tempering Monte

Carlo simulation, we use eight replicas at different temperatures in the range [1×10−8

Eh,0.001 Eh].

We investigate three active spaces that are successively enlarged, starting with a

CAS(4,4) of four spatial orbitals comprising four electrons that is increased in each step

by an occupied and a virtual orbital around the Fermi level yielding in total CAS(4,4),

CAS(6,6), and CAS(8,8). The CAS is specified in parentheses as (n,m) where n is the

number of electrons in m molecular orbitals. The number of variational parameters in

the CGTN states does not depend on the dimension of the N -particle Hilbert space

but on the number of orbitals in the corresponding active space. The selected active

spaces provide insight into the convergence behavior of the CGTN parametrization. For

the CAS(4,4), the number of variational parameters is around three times larger than

the size of the Hilbert space of CH2 (resulting in an over-parametrization), whereas

for CAS(6,6) it is of comparable size. For the CAS(8,8), however, there are about nine

times more many-electron basis states (i.e., occupation number vectors) than variational

parameters in the CGTN ansatz. Hence, while the first two smaller active spaces allow
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us to demonstrate that the CGTN ansatz is able to reproduce the CASSCF reference,

the third CAS probes the efficiency of the reduced-parameter CGTN ansatz. In order to

prevent spin-contamination in the CGTN state, the energy evaluation is performed in

the basis of spin-adapted configuration state functions (CSF) for the singlet and triplet

calculation. The weight for the CSF is calculated as a linear combination of the weights

for the occupation number vector.

In Figure 1 and Table 1, CASSCF energy splittings between singlet and triplet

spin states are compared to those obtained in the CGTN calculations. The number

of variational parameters are given for each calculation as well. The total absolute

energies cannot be quantitatively reproduced by the CGTN states but they provide a

qualitatively correct description of the energy difference between different spin states

for a set of active spaces.

Figure 1. Graphical representation of the spin splitting of the singlet and triplet

states of methylene with increasing size of the active space. For the singlet (×) and

triplet (⊓⊔) CGTN calculations, a spin-adapted configuration state function (CSF) basis

was employed. The singlet and triplet CASSCF calculations are shown as (+) and (♦),

respectively.

CAS(4,4) CAS(6,6) CAS(8,8)

-37.840

-37.820

-37.800

-37.780

E
ne

rg
y 

/ E
h

CASSCF S=0
CASSCF S=1
CGTN     S=0
CGTN     S=1
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Table 1. Difference of triplet ground state and lowest-lying singlet state energies of

methylene (CH2) as obtained from CASSCF reference and CGTN calculations. The

number of variational parameters in the CASSCF wave function corresponds to the

number of occupation number vectors with the correct particle number and projected

spin in the given active space: dimH S=0
CASSCF

and dimH S=1
CASSCF

parameters. The

singlet and triplet states approximated by the CGTN ansatz comprise an equal number

of variational parameters in the wave functions. In the last column, the difference

between CASSCF and CGTN spin-splitting energies ∆∆E are given in kcal mol−1.

CAS ∆ECASSCF/Eh dimH S=0/ dimH S=1 ∆ECGTN/Eh #CGTN ∆∆E / kcal mol−1

(4,4) 0.0466 36/16 0.0466 144 0.0

(6,6) 0.0435 400/225 0.0441 312 −0.38

(8,8) 0.0378 4900/3136 0.0381 544 −0.18

For the CAS(4,4), the CGTN calculation exactly reproduce the CASSCF reference

calculations and verify that the ansatz optimized with the parallel-tempering Monte

Carlo optimization can indeed find the correct ground-state wave function. The next

question to answer is whether the CGTN ansatz can also extract the essential features of

the electronic structure for larger active spaces because even if total electronic energies

are not well reproduced, it would be sufficient to reliably produce relative energies of

chemical accuracy (of about 1 kcal mol−1). We already found [52] that MPS as optimized

by the DMRG algorithm can reproduce the energetical spin splitting in transition metal

complexes and clusters although the one-dimensional MPS parametrization is not very

suited for this problem. The energy difference between two states can converge much

faster than the total electronic energies of the individual states. Considering that during

a chemical process (reaction, spin flip) only a small number of orbitals is needed to

qualitatively describe the changes in electronic structure, it can be understood that

the parametrization of the total electronic states requires a balanced representation of

all occupation number vectors that involve these orbitals. We may expect that this

balanced description is possible with a CGTN ansatz. This is exactly what we observe

in the CAS(6,6)- and CAS(8,8)-CGTN calculations. The relative energies appear to be

better reproduced than the absolute energies for the different spin states. Even though

the parametrization in terms of the CGTN states consists of only a small fraction of

parameters compared to the dimension of the Hilbert space in the CAS(8,8) case, the

vertical spin splitting is accurately reproduced.

The accuracy of the CGTN to represent the electronic structure can also be

assessed by performing an analysis of the CI coefficients of the CASSCF and the CGTN

calculations. In Figure 2 and Table 2, the CI coefficients of the ten most important

occupation number vectors for the singlet and triplet CGTN and CASSCF calculations

are compared.
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Figure 2. The squared CI coefficients of the most important occupation number

vectors are shown for the singlet (+) and triplet (♦) CASSCF and the singlet (×) and

triplet (⊓⊔) CGTN calculations for methylene in a CAS(8,8). Even though the CGTN

state has about 90% less parameters than the CASSCF wave function, it finds the most

important occupation number vectors and provides highly accurate CI coefficients.
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Table 2. The CI coefficients of the CASSCF and the CGTN wave functions of

singlet and triplet spin symmetry are shown for the ten most important occupation

number vectors. The CGTN coefficients qualitatively and even quantitatively agree

with the CASSCF reference which is the exact solution for the CAS(8,8) in the given

one-particle basis.

ONV C
(S=0)
CASSCF C

(S=0)
CGTN C

(S=1)
CASSCF C

(S=1)
CGTN

1 0.9623 0.9624 0.9945 0.9950

2 -0.2436 -0.2452 -0.0375 -0.0380

3 -0.0607 -0.0613 -0.0320 -0.0316

4 -0.0352 -0.0369 -0.0271 -0.0269

5 -0.0297 -0.0299 0.0249 0.0206

6 -0.0277 -0.0282 0.0236 0.0240

7 -0.0277 -0.0282 0.0232 0.0234

8 0.0269 0.0261 -0.0225 -0.0220

9 0.0269 0.0261 -0.0205 -0.0205

10 -0.0262 -0.0272 0.0205 0.0213

Qualitatively speaking, the CGTN states “carved” the important occupation

number vectors out of the entire N -electron Hilbert space that characterizes the

electronic structure of the underlying molecular system. Therefore, a qualitatively

correct description of the electronic structure is provided by the CGTN wave function.

5.2. Strongly Correlated Molecular System: Ozone

We continue our numerical study with a most difficult case selected to probe the

capabilities of the CGTN ansatz: The electronic structure of ozone at the transition state

structure of the O2 + O chemical reaction is a complex multireference problem [57]. We

performed CAS(8,9)-CI reference calculations for the singlet and triplet states of ozone

at the transition structure reported in [57]. For this calculation, we select Dunning’s

cc-pVTZ basis set [55,56] and an active space consisting of the 9−14a′ 1−3a′′ molecular

orbitals. The Hilbert space of the singlet state is then spanned by 7’956 and the one

for the triplet state by 5’268 occupation number vectors. The CGTN state contains

only 684 variational parameters which is an efficient reduction by 91% compared to the

singlet CASSCF wave function. The singlet energies of the ozone molecule at a transition

state structure are given in Table 3 and show the highly multi-reference nature of the

electronic structure when compared to the Hartree–Fock energy.
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Table 3. Electronic energy of the singlet state of transition-state ozone in Hartree.

The correlation energy (Ecorr) denotes the energy difference between the Hartree–

Fock energy and the energy obtained by a correlation method. All calculations were

performed with an active space of 9 molecular orbitals comprising 8 electrons. The

DMRG calculations were taken from [58] for comparison and m represents the number

of many-particle DMRG system basis states. The CGTN energy for the singlet state

is evaluated in a spin-adapted configuration state function (CSF) basis.

Method ES=0 / Eh Ecorr

HF −224.282 841 0%

CASCI −224.384 301 100%

DMRG(m=48) −224.384 252 99%

DMRG(m=156) −224.384 301 100%

CGTN −224.381 648 97%

The vertical spin splitting between the first excited singlet and ground-state triplet

state is reported in Table 4. For the first excited state of singlet symmetry a CSF

basis has been constructed to obtain a spin pure state withouth spin contamination.

For the triplet ground state, we have tested the levelshift approach as well as no spin

constrains at all and found that levelshift calculations are prone to get stuck in a local

minimum. This can be circumvented if no spin constraints are applied. Then, however,

spin contamination might become a problem. For the levelshift calculation, ǫ = 1 was

used. As in the previous study of methylene, the relative energies between the singlet

and triplet states converge much faster than the total electronic energies — even for

this highly multireference system. (Note that we used the same temperature range and

number of replicas as in the case of methylene.)

Table 4. Vertical spin-splitting energy differences between the singlet and triplet

state of ozone at the transition geometry. All calculations were in an active space of 9

molecular orbitals comprising 8 electrons. For the singlet CGTN energy, a CSF basis

was employed whereas no spin constraints were imposed on the triplet state calculation.

ES=0/Eh ES=1/Eh ∆E/kcalmol−1

HF -224.282 841 -224.357 167 46.640

CASCI -224.384 301 -224.416 172 19.999

CGTN -224.381 648 -224.412 775 19.532

In Figure 3, the convergence behaviour for the triplet ground state calculation is

shown. It can be seen that convergence difficulties arise when the levelshift operator is

applied. In the algorithm, the Ŝ−Ŝ+ operator translates into a high-order polynomial

which features many roots and therefore many local minima.
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Figure 3. The convergence of the energy for the replica with T = 1.0 × 10−8 Eh

of the triplet CGTN state of ozone in an active space of 9 molecular orbitals and

8 electrons is shown. The inner panel shows a zoom of the first thousands Monte

Carlo iterations with the Hartree–Fock and CASCI energies. It is evident that the

calculation employing the levelshift operator got stuck in a local minimum. The other

CGTN calculation has no spin restriction. However, since the ground state is a triplet

spin state, no spin contamination is expected. This is also seen in the expectation

value of the converged triplet CGTN state of 〈Ŝ2〉 = 1.99.
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6. Conclusions

In this work, we introduced a general class of tensor network states, which we denoted

Complete-Graph Tensor Network states, to approximate the electronic wave function

of a molecular system. This ansatz assumes pair correlations of one-electron states

(orbitals) to construct all CI expansion coefficients of a total electronic state. Hence,

instead of 2k — or 4k in the case of spatial orbitals — variational parameters, we

employ only k(k + 1)/2 × q2. CGTN states are a subclass of the most general CPS

form of tensor network approximations to the FCI state. The accuracy of the CGTN

approximation of total electronic states of molecules has been numerically studied for

methylene and ozone. We should note that this is the first application of a tensor network

parametrization for molecular wave functions employing the full non-local electronic

many-particle Hamiltonian. For this purpose, the k(k + 1)/2 × q2 CGTN parameters

have been optimized with a variational Monte Carlo protocol that we have augmented



Molecular Complete-Graph Tensor Network 16

by parallel tempering in order to prevent convergence to local minima of the electronic

energy hypersurface in this parameter space.

In molecular physics and chemistry, we are primarily interested in obtaining

accurate relative energies between two spin states or between two configurations on the

same potential energy surface to describe the thermodynamics and kinetics of chemical

reactions. The accurate calculation of relative energies is therefore mandatory. CGTN

states provide the flexibility to describe electronic structures without relying on an a

priori chosen reference configuration such as the Hartree–Fock state. The CGTN ansatz

is therefore not biased to any particular Slater determinant and capable of finding the

most important occupation number vectors in the Hilbert space of the molecular system.
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