1,491 research outputs found
Performance of a 128 channel analogue front-end chip for read-out of Si strip detector modules for LHC experiments
We present a 128-channel analogue front-end chip, SCT128A-HC, for readout of silicon strip detectors employed in the inner tracking detectors of the LHC experiment. The chip is produced in the radiation hard DMILL technology. The architecture of the chip and critical design issues are discussed. The performance of the chip has been evaluated in details in the test bench and is presented in the paper. The chip is used to read out prototype analogue modules compatible in size, functionality and performance with the ATLAS SCT base line modules. Several full size detector modules equipped with SCT128A-HC chips has been built and tested successfully in the lab with beta particles as well as in the test beam. The results concerning the signal-to-noise ratio, noise occupancy, efficiency and spatial resolution are presented. The radiation hardness issues are discussed. (5 refs)
Radiation tests on commercial instrumentation amplifiers, analog switches & DAC's
A study of several commercial instrumentation amplifiers (INA110, INA111, INA114, INA116, INA118 & INA121) under neutron and vestigial gamma radiation was done. Some parameters (Gain, input offset voltage, input bias currents) were measured on-line and bandwidth, and slew rate were determined before and after radiation. The results of the testing of some voltage references REF102 and ADR290GR and the DG412 analog switch are shown. Finally, different digital-to-analog converters were tested under radiation. (6 refs)
Analogue read-out chip for Si strip detector modules for LHC experiments
We present a 128-channel analogue front-end chip SCTA128 for readout of silicon strip detectors employed in the inner tracking detectors of LHC experiments. The architecture of the chip and critical design issues are discussed. The performance of the chip has been evaluated in detail in bench tests and is presented in the paper. The chip is used to read out prototype analogue modules compatible in size, functionality and performance with the ATLAS SCT base line modules. Several full size detector modules equipped with SCTA128 chips have been built and tested successfully in the lab with E particles as well as in beam tests
The ATLAS SCT grounding and shielding concept and implementation
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
- …