53 research outputs found

    Hyperglycaemic emergencies are a common problem

    Get PDF
    No Abstract

    Non-invasive management of organic impotence

    Get PDF
    No Abstract

    A structured record to implement the national Guidelines for diabetes and hypertension care

    Get PDF
    Background. Guidelines to improve standards of care for hypertension and diabetes were disseminated by the National Department of Health in 1996 but have generally not been implemented by health professionals in localprimary care. A strategy for the adoption and implementation of the Guidelines was developed in collaboration with health professionals in primary care.Objectives. The development of a structured record, with prompts for the management of diabetes and hypertension according to the Guidelines.Setting. Three community health centres (CHCs) in the Western Cape.Participants. Doctors and nurses managing patients with diabetes and hypertension.Methods. A draft of the structured record was developed at a single-pilot CHC in the Western Cape. Focus group discussions established the core requirements for a structured record. Process, result and structural indicators in line with the national Guidelines were considered for inclusion in the draft record. This draft record was then piloted at two other CHCs. Comments from semi-structured interviews and pre-and post-test evaluation questionnaires were used to compile the final instrument.Results. Eleven doctors and 8 nurses participated in the development of the final instrument. Important considerations in the design were a single-page, user-friendly format, tick-boxes to reduce writing, prompts, provision for sequential recording, target setting, and compatibility with the Guidelines. The final instrument was piloted and elicited a favourable overall response.Conclusion. The structured record simplifies the application of the Guidelines and the systematic recording of processes of care. The effectiveness of the Guidelines will be evaluated further in a randomised control qial using the structured record

    Total daily energy expenditure in black and white, lean and obese South African women.

    Get PDF
    Background/Objectives:In South Africa (SA), the prevalence of obesity in women is 56%, with black women being most at risk (62%). Studies in the United States have demonstrated ethnic differences in resting (REE) and total daily energy expenditure (TDEE) between African American (AA) and their white counterparts. We investigated whether differences in EE exist in black and white SA women, explaining, in part, the ethnic obesity prevalence differences.Subjects/Methods:We measured REE, TDEE and physical activity EE (PAEE) in lean (BMI 30 kg m(-2)) SA women (N=44, 30+/-6 year). REE, TDEE, PAEE and total awake EE were measured during a 21 h stay in a respiration chamber.Results:Black and white subjects within obese and lean groups were not significantly different for age, mass, BMI and % body fat. However, fat-free mass (kg FFM) was consistently lower in the black women (P<0.01) in both weight groups. After adjusting EE measurements for differences in FFM, REE was not significantly different for either body weight or ethnicity, although 24 h TDEE (kJ) was significantly greater in the obese women (P<0.01) and white women (P<0.05). Total awake non-PAEE was not significantly different for either groups, while total awake time was only significantly lower for the lean groups (P<0.01). Total PAEE (kJ min(-1)) was significantly lower in the lean (P<0.001) and black groups (P<0.01).Conclusions:In this sample of matched, lean and obese, black and white SA women, differences in TDEE were largely explained by ethnic differences in PAEE, and were not as a result of ethnic differences in REE.European Journal of Clinical Nutrition advance online publication, 13 February 2008; doi:10.1038/ejcn.2008.8

    Chromosomal localization of 15 ion channel genes

    Full text link
    Several human Mendelian diseases, including the long-QT syndrome, malignant hyperthermia, and episodic ataxia/myokymia syndrome, have recently been demonstrated to be due to mutations in ion channel genes. Systematic mapping of ion channel genes may therefore reveal candidates for other heritable disorders. In this study, the GenBank and dbEST databases were used to identify members of several ion channel families (voltage-gated calcium and sodium cardiac chloride, and all classes of potassium channels). Genes and ESTs without prior map localization were identified based on GDB and OWL database information and 15 genes and ESTs were selected for mapping. Of these 15, only the serotonin receptor 5HT3R had been previously mapped to a chromosome. A somatic cell hybrid panel (SCH) was screened with an STS from each gene and, if necessary, the results verified by a second SCH panel. For three ESTs, rodent derived PCR products of the same size as the human STS precluded SCH mapping. For these three, human Pl clones were isolated and the genomic location was determined by metaphase FISH. These genes and ESTs can now be further evaluated as candidate genes for inherited cardiac, neuromuscular, and psychiatric disorders mapped to these chromosomes. Furthermore, the ESTs developed in this study can be used to isolate genomic clones, enabling the determination of each transcript's genomic structure and physical map location. This approach may also be applicable to other gene families and may aid in the identification of candidate genes for groups of related heritable disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45548/1/11188_2006_Article_BF02369898.pd

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)
    corecore