365 research outputs found
Introduction: Cross-Border Canada/U.S. Cooperation in Investigations and Enforcement Actions Vis a Vis Private Parties
crossborder investigation and enforcement--Canada and United State
Introduction: Protecting and Exploiting U.S. and Canadian Intellectual Property abroad in a Technologically Changing World Economy
The Impact of Technological Change in the Canada/U.S. Contex
Introduction: Cross-Border Canada/U.S. Cooperation in Investigations and Enforcement Actions Vis a Vis Private Parties
crossborder investigation and enforcement--Canada and United State
The Circumstellar Environment of High-Mass Protostellar Objects: IV. C17O Observations and Depletion
We observe 84 candidate young high-mass sources in the rare isotopologues
C17O and C18O to investigate whether there is evidence for depletion
(freeze-out) towards these objects. Observations of the J=2-1 transitions of
C18O and C17O are used to derive the column densities of gas towards the
sources and these are compared with those derived from submillimetre continuum
observations. The derived fractional abundance suggests that the CO species
show a range of degrees of depletion towards the objects. We then use the
radiative transfer code RATRAN to model a selection of the sources to confirm
that the spread of abundances is not a result of assumptions made when
calculating the column densities. We find a range of abundances of C17O that
cannot be accounted for by global variations in either the temperature or dust
properties and so must reflect source to source variations. The most likely
explanation is that different sources show different degrees of depletion of
the CO. Comparison of the C17O linewidths of our sources with those of CS
presented by other authors reveal a division of the sources into two groups.
Sources with a CS linewidth >3 km/s have low abundances of C17O while sources
with narrower CS lines have typically higher C17O abundances. We suggest that
this represents an evolutionary trend. Depletion towards these objects shows
that the gas remains cold and dense for long enough for the trace species to
deplete. The range of depletion measured suggests that these objects have
lifetimes of 2-4x10^5 years.Comment: 18 pages. Accepted for publication in Astronomy & Astrophysic
Molecular line mapping of the giant molecular cloud associated with RCW 106 - II. Column density and dynamical state of the clumps
We present a fully sampled C^{18}O (1-0) map towards the southern giant
molecular cloud (GMC) associated with the HII region RCW 106, and use it in
combination with previous ^{13}CO (1-0) mapping to estimate the gas column
density as a function of position and velocity. We find localized regions of
significant ^{13}CO optical depth in the northern part of the cloud, with
several of the high-opacity clouds in this region likely associated with a
limb-brightened shell around the HII region G333.6-0.2. Optical depth
corrections broaden the distribution of column densities in the cloud, yielding
a log-normal distribution as predicted by simulations of turbulence.
Decomposing the ^{13}CO and C^{18}O data cubes into clumps, we find relatively
weak correlations between size and linewidth, and a more sensitive dependence
of luminosity on size than would be predicted by a constant average column
density. The clump mass spectrum has a slope near -1.7, consistent with
previous studies. The most massive clumps appear to have gravitational binding
energies well in excess of virial equilibrium; we discuss possible
explanations, which include magnetic support and neglect of time-varying
surface terms in the virial theorem. Unlike molecular clouds as a whole, the
clumps within the RCW 106 GMC, while elongated, appear to show random
orientations with respect to the Galactic plane.Comment: 17 pages, to appear in MNRA
Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator.
BackgroundAmyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM.ResultsWe find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency.ConclusionThese data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished
Optical pumping NMR in the compensated semiconductor InP:Fe
The optical pumping NMR effect in the compensated semiconductor InP:Fe has
been investigated in terms of the dependences of photon energy (E_p), helicity
(sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In
signal enhancements show large sigma+- asymmetries and anomalous oscillations
as a function of E_p. We find that (i) the oscillation period as a function of
E_p is similar for {31}P and {115}In and almost field independent in spite of
significant reduction of the enhancement in higher fields. (ii) A
characteristic time for buildup of the {31}P polarization under the light
exposure shows strong E_p-dependence, but is almost independent of sigma+-.
(iii) The buildup times for {31}P and {115}In are of the same order (10^3 s),
although the spin-lattice relaxation times (T_1) are different by more than
three orders of magnitude between them. The results are discussed in terms of
(1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated
semiconductors, and (2) interplay between {31}P and dipolar ordered indium
nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
Experimental realisation of Shor's quantum factoring algorithm using qubit recycling
Quantum computational algorithms exploit quantum mechanics to solve problems
exponentially faster than the best classical algorithms. Shor's quantum
algorithm for fast number factoring is a key example and the prime motivator in
the international effort to realise a quantum computer. However, due to the
substantial resource requirement, to date, there have been only four
small-scale demonstrations. Here we address this resource demand and
demonstrate a scalable version of Shor's algorithm in which the n qubit control
register is replaced by a single qubit that is recycled n times: the total
number of qubits is one third of that required in the standard protocol.
Encoding the work register in higher-dimensional states, we implement a
two-photon compiled algorithm to factor N=21. The algorithmic output is
distinguishable from noise, in contrast to previous demonstrations. These
results point to larger-scale implementations of Shor's algorithm by harnessing
scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure
- …