14 research outputs found

    Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films

    Full text link
    In this study, antioxidant biodegradable films based on pea protein and alpha-tocopherol were successfully developed by solution casting. The effect of both the homogenization conditions (rotor stator and microfluidizer) and the relative humidity (RH) on the microstructure and physical properties (transparency, tensile, oxygen and water vapour barrier properties) of pea protein/alpha-tocopherol-based films was evaluated. The addition of alpha-tocopherol produced minimal changes in the films transparency, while providing them with antioxidant properties and improved water vapour and oxygen barrier properties (up to 30 % in both water vapour and oxygen permeability) when films were at low and intermediate RH. The addition of alpha-tocopherol in microfluidized films gave rise to an increase in their resistance to break and extensibility (up to 27 % in E values) at intermediate and high RH. These results add a new insight into the potential of employing pea protein and alpha-tocopherol in the development of fully biodegradable antioxidant films which are of interest in food packagingThe authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, co-funded by FEDER. Author M.J.Fabra is a recipient of a Juan de la Cierva contract from the Spanish Ministerio de Economia y Competitividad.Fabra, MJ.; JimĂ©nez, A.; Talens Oliag, P.; Chiralt, A. (2014). Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films. Food and Bioprocess Technology. 7(12):3569-3578. https://doi.org/10.1007/s11947-014-1372-0S35693578712ASTM (1995). Standard test methods for water vapor transmission of materials. Standards Desingnations: E96-95. In: Annual Book of ASTM Standards (pp. 406-413); American Society for Testing and Materials: Philadelphia, PA.ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In: Annual book of American Standard Testing Methods (pp 162-170). D882. Philadelphia:ASTM.Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin. Food Hydrocolloids, 19(1), 73–82.Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with alpha-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100, 239–244.Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization. Food and Bioprocess Technology, 7(5), 1472–1482.Choi, W. S., & Han, J. H. (2001). Physical and mechanical properties of pea–protein-based edible films. Journal of Food Science, 66, 319–322.Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67, 1399–1406.Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acidebeeswax mixtures. Food Hydrocolloids, 23, 676–683.Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24, 384–391.Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25, 1441–1447.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372–379.Frankel, E. N., Huang, S. W., Kanner, J., & German, J. B. (1994). Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. Journal of Agriculture and Food Chemistry, 42(5), 1054–1059.GĂłmez-Estaca, J., GimĂ©nez, B., Montero, P., & GĂłmez-GuillĂ©n, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78–85.Huang, S. W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of alpha.- and.gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agriculture and Food Chemistry, 42(10), 2108–2114.Hutchings, J. B. (1999). Food and colour appearance (2nd ed.). Gaithersburg: Chapman and Hall Food Science Book, Aspen Publication.JimĂ©nez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropylmethylcellulose edible films containing fatty acids. Carbohydrate Polymers, 82(3), 585–593.JimĂ©nez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695–702.Jung, M. Y., & Min, D. B. (1990). Effects of alpha-. Îł-, and ÎŽ-tocopherols on oxidative stability of soybean oil. Journal of Food Science, 55(5), 1464–1465.LĂłpez-de-Dicastillo, C., Alonso, J. M., CatalĂĄ, R., Gavara, R., & HernĂĄndez-Muñoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. Journal of Agricultural and Food Chemistry, 58, 10958–10964.Ma, W., Tang, C.-H., Yin, S.-W., Yang, X. Q., Qi, J. R., & Xia, N. (2012). Effect of homogenization conditions on properties of gelatin-olive oil composite films. Journal of Food Engineering, 113(1), 136–142.Mauer, L. J., Smith, D. E., & Labuza, T. P. (2000). Water vapor permeability, mechanical, and structural properties of edible ÎČ-casein films. International Dairy Journal, 10(5–6), 353–358.Mc Hugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophobic edible films:modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.McHugh, T. H., & Krochta, J. M. (1994). Dispersed phase particle size effects on water vapour permeability of whey protein–beeswax emulsion films. Journal of Food Processing and Preservation, 18, 173–188.Ozkan, G., Simsek, B., & Kuleasan, H. (2007). Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. Journal of Food Engineering, 79, 1391–1396.Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science and Emerging Technologies, 12, 50–55.Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radical Biology and Medicine, 26, 1231–1237.Roos, Y. H. (1995). Phase transitions in food. San Diego: Academic Press.Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S., & Mauri, A. N. (2010). Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocolloids, 24(5), 525–533.Salgado, P. R., FernĂĄndez, G. B., Drago, S. R., & Mauri, A. N. (2011). Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocolloids, 25, 1433–1440.Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties form Pacific hake (Merluccius productus). Food Chemistry, 107, 768–776.Souza, B. W. S., Cerqueira, A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110–2115

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Effect of fatty acids and 'Brazilian elemi' on composite films based on gelatin

    No full text
    Composite edible/degradable films produced with hydrocolloids and lipids can result in better functionality than films produced with the components, especially with respect to their barrier properties. Of the lipids, waxes produce the best water vapor barrier properties, but produce fragile/brittle films. The problem of incorporating lipids into a hydrocolloid in a homogenous way has still to be solved. The objective of this research was the incorporation of 'Brazilian elemi', a highly hydrophobic resinous exudate of the botanical family Burseraceae, into gelatin films, using a blend of stearic and palmitic acids to dissolve the elemi, and subsequent emulsification of the filmogenic solution using triacetin as plasticizer. Films with the addition of acids, the blend and the blend and the elemi presented better water vapor barrier properties as compared to the gelatin/triacetin film. The mechanical resistance decreased with the addition of the lipids and the opacity and soluble matter increased. The confocal laser scanning microscopy showed the size distribution of the lipid drops and their localization in the matrix. They were not homogeneously incorporated despite the improvement in the water barrier property and the fact that the films appeared to be homogenous and malleable. The analyses by differential scanning calorimetry showed additional melting points besides that characteristic of the protein rich fraction, representing melting of the part of the lipid not incorporated into the filmogenic matrix. Dynamic mechanical calorimetry also showed the presence of more than one glass transition temperature (T g), indicating the occurrence of phase separation. (C) 2004 Elsevier Ltd. All rights reserved.191738
    corecore