45 research outputs found

    Cerebrospinal fluid and plasma neurofilament light relate to abnormal cognition

    Get PDF
    Introduction Neuroaxonal damage may contribute to cognitive changes preceding clinical dementia. Accessible biomarkers are critical for detecting such damage. Methods Plasma and cerebrospinal fluid (CSF) neurofilament light (NFL) were related to neuropsychological performance among Vanderbilt Memory & Aging Project participants (plasma n = 333, 73 ± 7 years; CSF n = 149, 72 ± 6 years) ranging from normal cognition (NC) to mild cognitive impairment (MCI). Models adjusted for age, sex, race/ethnicity, education, apolipoprotein E ε4 carriership, and Framingham Stroke Risk Profile. Results Plasma NFL was related to all domains (P values ≤ .008) except processing speed (P values ≥ .09). CSF NFL was related to memory and language (P values ≤ .04). Interactions with cognitive diagnosis revealed widespread plasma associations, particularly in MCI participants, which were further supported in head-to-head comparison models. Discussion Plasma and CSF NFL (reflecting neuroaxonal injury) relate to cognition among non-demented older adults albeit with small to medium effects. Plasma NFL shows particular promise as an accessible biomarker with relevance to cognition in MCI

    Lower Left Ventricular Ejection Fraction Relates to Cerebrospinal Fluid Biomarker Evidence of Neurodegeneration in Older Adults

    Get PDF
    BACKGROUND: Subclinical cardiac dysfunction is associated with decreased cerebral blood flow, placing the aging brain at risk for Alzheimer's disease (AD) pathology and neurodegeneration. OBJECTIVE: This study investigates the association between subclinical cardiac dysfunction, measured by left ventricular ejection fraction (LVEF), and cerebrospinal fluid (CSF) biomarkers of AD and neurodegeneration. METHODS: Vanderbilt Memory & Aging Project participants free of dementia, stroke, and heart failure (n = 152, 72±6 years, 68% male) underwent echocardiogram to quantify LVEF and lumbar puncture to measure CSF levels of amyloid-β42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau). Linear regressions related LVEF to CSF biomarkers, adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile, cognitive diagnosis, and apolipoprotein E ɛ4 status. Secondary models tested an LVEF x cognitive diagnosis interaction and then stratified by diagnosis (normal cognitive (NC), mild cognitive impairment (MCI)). RESULTS: Higher LVEF related to decreased CSF Aβ42 levels (β= -6.50, p = 0.04) reflecting greater cerebral amyloid accumulation, but this counterintuitive result was attenuated after excluding participants with cardiovascular disease and atrial fibrillation (p = 0.07). We observed an interaction between LVEF and cognitive diagnosis on CSF t-tau (p = 0.004) and p-tau levels (p = 0.002), whereas lower LVEF was associated with increased CSF t-tau (β= -9.74, p = 0.01) and p-tau in the NC (β= -1.41, p = 0.003) but not MCI participants (p-values>0.13). CONCLUSIONS: Among cognitively normal older adults, subclinically lower LVEF relates to greater molecular evidence of tau phosphorylation and neurodegeneration. Modest age-related changes in cardiovascular function may have implications for pathophysiological changes in the brain later in life

    One-pot synthesis of nano-crystalline MCM-22

    Full text link
    [EN] Nano-crystalline MCM-22 zeolite was synthesized in a one-pot procedure by the use of an organosilane (dimethyl-octadecyl-(3-trimethoxysilylpropyl)-ammonium chloride, TPOAC) in the zeolite synthesis gel. This crystal growth inhibition procedure introduced mesopores in the MCM-22 crystallites. The lower mechanical stability of the nano-crystalline MCM-22 zeolite compared with bulk MCM-22 can be countered to some extent by pillaring. The increased external surface of the microporous zeolite domains resulted in increased accessibility of the Bronsted acid sites, as followed from the better performance in liquid-phase benzene alkylation with propylene as compared with bulk MCM-22. The increased accessibility of the internal acid sites in Mo-loaded hierarchical MCM-22 was also evident from the improved benzene selectivity during methane aromatization. Silylation of hierarchical Mo/MCM-22 was detrimental for the catalytic performance in MDA. The nano-crystalline MCM-22 has physico-chemical and catalytic properties intermediate between those of MCM-22 and ITQ-2 with the benefit over ITQ-2 that it can be synthesized in a single step. (C) 2015 Elsevier Inc. All rights reserved.Funding from the 7th Framework Program of the European Commission through the Collaborative Project Next-GTL (agreement no 229183) and financial support by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat (CSD2009-00050) and MAT2012-31657 are acknowledged. Marta E. Martinez Armero thanks MINECO for economical support through pre-doctoral fellowship for doctors training (BES-2013-066800). The authors thank B. Esparcia for technical assistance.Tempelman, CHL.; Portilla Ovejero, MT.; Martínez Armero, ME.; Mezari, B.; De Caluwe, NGR.; Martínez, C.; Hensen, EJM. (2016). One-pot synthesis of nano-crystalline MCM-22. Microporous and Mesoporous Materials. 220:28-38. https://doi.org/10.1016/j.micromeso.2015.08.018S283822
    corecore