271 research outputs found

    Vacuum energy in the presence of a magnetic string with delta function profile

    Full text link
    We present a calculation of the ground state energy of massive spinor fields and massive scalar fields in the background of an inhomogeneous magnetic string with potential given by a delta function. The zeta functional regularization is used and the lowest heat kernel coefficients are calculated. The rest of the analytical calculation adopts the Jost function formalism. In the numerical part of the work the renormalized vacuum energy as a function of the radius RR of the string is calculated and plotted for various values of the strength of the potential. The sign of the energy is found to change with the radius. For both scalar and spinor fields the renormalized energy shows no logarithmic behaviour in the limit R0R\to 0, as was expected from the vanishing of the heat kernel coefficient A2A_2, which is not zero for other types of profiles.Comment: 30 pages, 10 figure

    A highly efficient, stable, and rapid approach for ex vivo human liver gene therapy via a FLAP lentiviral vector

    Get PDF
    Allogenic hepatocyte transplantation or autologous transplantation of genetically modified hepatocytes has been used successfully to correct congenital or acquired liver diseases and can be considered as an alternative to orthotopic liver transplantation. However, hepatocytes are neither easily maintained in culture nor efficiently genetically modified and are very sensitive to dissociation before their reimplantation into the recipient. These difficulties have greatly limited the use of an ex vivo approach in clinical trials. In the present study, we have shown that primary human and rat hepatocytes can be efficiently transduced with a FLAP lentiviral vector without the need for plating and culture. Efficient transduction of nonadherent primary hepatocytes was achieved with a short period of contact with vector particles, without modifying hepatocyte viability, and using reduced amounts of vector. We also showed that the presence of the DNA FLAP in the vector construct was essential to reach high levels of transduction. Moreover, transplanted into uPA/SCID mouse liver, lentivirally transduced primary human hepatocytes extensively repopulated their liver and maintained a differentiated and functional phenotype as assessed by the stable detection of human albumin and antitrypsin in the serum of the animals for months. In conclusion, the use of FLAP lentiviral vectors allows, in a short period of time, a high transduction efficiency of human functional and reimplantable hepatocytes. This work therefore opens new perspectives for the development of human clinical trials based on liver-directed ex vivo gene therapy.info:eu-repo/semantics/publishedVersio

    Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity

    Get PDF
    This work was supported by grants from Institut National de la Sante et de la Recherche Medicale (Inserm) – France, Universite Pierre et Marie Curie (UPMC) – France, Agence National de la Recherche sur le Sida et les Hepatites (ANRS) – France (n° N14015DR) and PHC-Tassili (11MDU826). MD was supported by ANRS (grant ASA14013DRA). YM was supported by French Ministry for Higher Education and Research and by the Ligue contre le Cancer (grant n° GB/MA/VSP-10504)

    Characterization of a Novel Cutaneous Human Papillomavirus Genotype HPV-125

    Get PDF
    The DNA genome of a novel HPV genotype, HPV-125, isolated from a hand wart of an immuno-competent 19-year old male was fully cloned, sequenced and characterized. The full genome of HPV-125 is 7,809-bp in length with a GC content of 46.4%. By comparing the nucleotide sequence of the complete L1 gene, HPV-125 is phylogenetically placed within cutaneotrophic species 2 of Alphapapillomaviruses, and is most closely related to HPV-3 and HPV-28. HPV-125 has a typical genomic organization of Alphapapillomaviruses and contains genes coding for five early proteins, E6, E7, E1, E2 and E4 and two late capsid proteins, L1 and L2. The genome contains two non-coding regions: the first located between the L1 and E6 genes (nucleotide positions 7,137–7,809, length 673-bp) and the second between genes E2 and L2 (nucleotide positions 3,757–4,216, length 460-bp). The E6 protein of HPV-125 contains two regular zinc-binding domains at amino acid positions 29 and 102, whereas the E7 protein exhibits one such domain at position 50. HPV-125 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of HPV-125, a quantitative type-specific real-time PCR was developed. The 95% limit-of-detection of the assay was 2.5 copies per reaction (range 1.7–5.7) and the intra- and inter-assay coefficients of variation were 0.47 and 2.00 for 100 copies per reaction, and 1.15 and 2.15 for 10 copies per reaction, respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (a total of 601 samples) showed that HPV-125 is a relatively rare HPV genotype, with cutaneous tropism etiologically linked with sporadic cases of common warts

    Theories of deviant sexual fantasy

    Get PDF
    Deviant sexual fantasies have long been regarded as an important factor in sexual offending, with research showing that they serve multiple functions (e.g., inducing arousal, planning behavior) and interrelate with numerous other factors (e.g., emotional states, personality). However, within this chapter, an evaluation of the existing theoretical accounts is provded, which indicates that the construct is not well understood or conceptualized. As a result, the authors present a new model; The Dual-Process Model of Sexual Thinking (DPM-ST). This account is developed by drawing upon relevant research from socio-cognitive psychology and mental imagery and knitting it with existing research on deviant sexual fantasies. The DPM-ST states that associative processes are involved in the generation of intrusive sexual thoughts, whereas controlled processes are responsible for the deliberate, effortful, and goal-oriented act of sexual fantasizing. Research supporting the model is outlined, as are various implications for future research and clinical practice

    The quality case for information technology in healthcare

    Get PDF
    BACKGROUND: As described in the Institute of Medicine's Crossing the Quality Chasm report, the quality of health care in the U.S. today leaves much to be desired. DISCUSSION: One major opportunity for improving quality relates to increasing the use of information technology, or IT. Health care organizations currently invest less in IT than in any other information-intensive industry, and not surprisingly current systems are relatively primitive, compared with industries such as banking or aviation. Nonetheless, a number of organizations have demonstrated that quality can be substantially improved in a variety of ways if IT use is increased in ways that improve care. Specifically, computerization of processes that are error-prone and computerized decision support may substantially improve both efficiency and quality, as well as dramatically facilitate quality measurement. This report discusses the current levels of IT and quality in health care, how quality improvement and management are currently done, the evidence that more IT might be helpful, a vision of the future, and the barriers to getting there. SUMMARY: This report suggests that there are five key policy domains that need to be addressed: standards, incentives, security and confidentiality, professional involvement, and research, with financial incentives representing the single most important lever

    Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity

    Get PDF
    Background & Aims: Hepatitis B virus (HBV) RNA can undergo alternative splicing, but the relevance of this post-transcriptional regulation remains elusive. The mechanism of HBV alternative splicing regulation and its impact on liver pathogenesis were investigated. Methods: HBV RNA-interacting proteins were identified by RNA pull-down, combined with mass spectrometry analysis. HBV splicing regulation was investigated in chemically and surgically induced liver damage, in whole HBV genome transgenic mice and in hepatoma cells. Viral and endogenous gene expression were quantified by quantitative reverse transcription polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay. Resident liver immune cells were studied by fluorescence-activated cell sorting. Results: HBV pregenomic RNA-interacting proteins were identified and 15% were directly related to the splicing machinery. Expression of these splicing factors was modulated in HBV transgenic mice with liver injuries and contributed to an increase of the HBV spliced RNA encoding for HBV splicing-generated protein (HBSP). HBSP transgenic mice with chemically induced liver fibrosis exhibited attenuated hepatic damage. The protective effect of HBSP resulted from a decrease of inflammatory monocyte/macrophage recruitment through downregulation of C-C motif chemokine ligand 2 (CCL2) expression in hepatocytes. In human hepatoma cells, the ability of HBSP to control CCL2 expression was confirmed and maintained in a whole HBV context. Finally, viral spliced RNA detection related to a decrease of CCL2 expression in the livers of HBV chronic carriers underscored this mechanism. Conclusion: The microenvironment, modified by liver injury, increased HBSP RNA expression through splicing factor regulation, which in turn controlled hepatocyte chemokine synthesis. This feedback mechanism provides a novel insight into liver immunopathogenesis during HBV infection. Lay summary: Hepatitis B virus persists for decades in the liver of chronically infected patients. Immune escape is one of the main mechanisms developed by this virus to survive. Our study highlights how the crosstalk between virus and liver infected cells may contribute to this immune escape

    Hepatitis B Virus Alters the Antioxidant System in Transgenic Mice and Sensitizes Hepatocytes to Fas Signaling

    Get PDF
    Hepatitis B virus (HBV) is a major etiological factor of hepatocellular carcinoma (HCC). However, the precise pathogenetic mechanisms linking HBV infection and HCC remain uncertain. It has been reported that decreased antioxidant enzyme activities are associated with severe liver injury and hepatocarcinogenesis in mouse models. It is unclear if HBV can interfere with the activities of antioxidant enzymes. We established a HBV transgenic mouse line, which spontaneously developed HCC at 2 years of age. We studied the activities of the antioxidant enzymes in the liver of the HBV transgenic mice. Our results showed that the antioxidant enzymes glutathione peroxidase and superoxide dismutase 2 were down-regulated in HBV transgenic mice and correlated with JNK activation. HBV enhanced the Fas-mediated activation of caspase 6, caspase 8 and JNK without enhancing the activation of caspase 3 and hepatocellular apoptosis. As a proper redox balance is important for maintaining cellular homeostasis, these effects of HBV on the host antioxidant system and Fas-signaling may play an important role in HBV-induced hepatocarcinogenesis
    corecore