440 research outputs found
DziaÅalnoÅÄ Studencko-Doktoranckiego KoÅa Naukowego ePRINT w roku akademickim 2016/2017
The article presents activities of the Student-Doctoral Association āePRINTā of Information Management and Book Studies at the Institute of Information Science and Book Studies of the Nicolaus Copernicus University in ToruÅ in academic year 2016/2017.ArtykuÅ prezentuje dziaÅalnoÅÄ Studencko-Doktoranckiego KoÅa Naukowego ePRINT w roku akademickim 2016/2017, dziaÅajÄ
cego od paÅŗdziernika 2014 r. przy Instytucie Informacji Naukowej i Bibliologii UMK. W swoich szeregach obecnie skupia 22 osoby. Jego opiekunem jest dr Piotr Rudera
Opole ā A Cyclist-Friendly City
The main objective of the paper is to present the way to modernize the network of cycling paths so that cycling is more pleasant, safer and more convenient [15]. We want to change the means of transport from the car or bus onto your bik
Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70āP72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol
Changes in the Histone Acetylation Patterns during the Development of the Nervous System
Epigenetic modification such as DNA methylation and histone acetylation plays essential roles in many aspects of cellular function and development of animals. There is an increasing amounts of evidence for dynamic changes in the histone acetylation of specific gene segments, but little attempt was made to examine global pattern changes in the histone acetylation in developing nervous system. In this study, we found that acetylated histone H3 and H4 immunoreactivities were relatively weak in neuroepithelial cells in the ventricular zone of developing rat cerebral cortex or chick spinal cord, compared to the immature young neurons in the cortical plate of a rat embryo or lateral motor column in chick spinal cord. On the other hand, adult neural stem cells in the dentate gyrus (DG) of rat hippocampal formation did not exhibit such diminished histone acetylation, compared to neuroblasts and mature DG neurons. These results suggest that the level of histone acetylation is highly dynamic and tightly linked to the neuronal types and the differentiation stages
Epigenetic Regulation of BDNF Gene in Response to Stress
Neuronal plasticity induced by changes in synaptic morphology and function is well known to play a pivotal role in leaning and memory as well as adaptation to stress. It is suggested that these plastic changes are due to orchestration of alterations in gene expression in the brain. Recent advances in molecular biology have provided evidence that epigenetic mechanisms, such as DNA methylation and histone modification, are crucial to gene transcription in the mammalian brain. Our research group has recently investigated the involvement of histone actylation at the promoter of the brain-derived neurotrophic factor (BDNF) gene in stress-induced reduction in BDNF, as well as in fear conditioning-induced enhancement of BDNF, in the rat hippocampus. The results of the stress study demonstrated that single-immobilization stress significantly reduced the levels of total, exon I, and exon IV BDNF mRNA, and also significantly reduced acetylation levels of histone H3, but not H4, at the promoter of exons I, IV, and VI. The results of the fear conditioning study showed that footshock stress significantly increased the levels of total, exon I, and exon IV BDNF mRNA, with significantly increased acetylation levels of both histone H3 and H4, at the promoter of exons I and IV, followed by enhanced freezing to fear-context exposure. These findings suggest that changes in BDNF transcription in the rat hippocampus in response to stressful stimuli are, at least in part, regulated by histone acetylation status
Smad3 activates the Sox9-dependent transcription on chromatin
Transforming growth factor (TGF)-Ī² has an essential role for the Sry-type high-mobility-group box (Sox)-regulated chondrogenesis. Chondrogenic differentiation is also controlled by chromatin-mediated transcription. We have previously reported that TGF-Ī²-regulated Smad3 induces chondrogenesis through the activation of Sox9-dependent transcription. However, the cross-talk between TGF-Ī² signal and Sox9 on chromatin-mediated transcription has not been elucidated. In the present study, we investigated the activity of Smad3, Sox9, and coactivator p300 using an in vitro chromatin assembly model. Luciferase reporter assays revealed that Smad3 stimulated the Sox9-mediated transcription in a TGF-Ī²-dependent manner. Recombinant Sox9 associated with phosphorylated Smad3/4 and recognized the enhancer region of type II collagen gene. In vitro transcription and S1 nuclease assays showed that Smad3 and p300 cooperatively activated the Sox9-dependent transcription on chromatin template. The combination treatment of phosphorylated Smad3, Sox9, and p300 were necessary for the activation of chromatin-mediated transcription. These findings suggest that TGF-Ī² signal Smad3 plays a key role for chromatin remodeling to induce chondrogenesis via its association with Sox9
Sequentiality and processivity of nuclear receptor coregulators in regulation of target gene expression
A series of data has accumulated over the past five years that raises questions about our current understanding of the transcriptional process and its regulation. Following the discovery of coactivators for nuclear receptors (NRs), a large number of these molecules have been reported in the literature. This perspective will summarize some opinions on the significance of this large number of factors
Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions
The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP
When an essential amino acid is limited, a signaling cascade is triggered that leads to increased translation of the āmaster regulatorā, activating transcription factor 4 (ATF4), and resulting in the induction of specific target genes. Binding of ATF4 to the amino acid response element (AARE) is an essential step in the transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation. We set out to identify proteins that interact with ATF4 and that play a role in the transcriptional activation of CHOP. Using a tandem affinity purification (TAP) tag approach, we identified p300/CBP-associated factor (PCAF) as a novel interaction partner of ATF4 in leucine-starved cells. We show that the N-terminal region of ATF4 is required for a direct interaction with PCAF and demonstrate that PCAF is involved in the full transcriptional response of CHOP by amino acid starvation. Chromatin immunoprecipitation analysis revealed that PCAF is engaged on the CHOP AARE in response to amino acid starvation and that ATF4 is essential for its recruitment. We also show that PCAF stimulates ATF4-driven transcription via its histone acetyltransferase domain. Thus PCAF acts as a coactivator of ATF4 and is involved in the enhancement of CHOP transcription following amino acid starvation
Gene silencing induced by oxidative DNA base damage: association with local decrease of histone H4 acetylation in the promoter region
Oxidized DNA bases, particularly 7,8-dihydro-8-oxoguanine (8-oxoG), are endogenously generated in cells, being a cause of carcinogenic mutations and possibly interfering with gene expression. We found that expression of an oxidatively damaged plasmid DNA is impaired after delivery into human host cells not only due to decreased retention in the transfected cells, but also due to selective silencing of the damaged reporter gene. To test whether the gene silencing was associated with a specific change of the chromatin structure, we determined the levels of histone modifications related to transcriptional activation (acetylated histones H3 and H4) or repression (methylated K9 and K27 of the histone H3, and histone H1) in the promoter region and in the downstream transcribed DNA. Acetylation of histone H4 was found to be specifically decreased by 25% in the proximal promoter region of the damaged gene, while minor quantitative changes in other tested chromatin components could not be proven as significant. Treatment with an inhibitor of histone deacetylases, trichostatin A, partially restored expression of the damaged DNA, suggesting a causal connection between the changes of histone acetylation and persistent gene repression. Based on these findings, we propose that silencing of the oxidatively damaged DNA may occur in a chromatin-mediated mechanism
- ā¦