394 research outputs found
Modelling growth, recruitment and mortality to describe and simulate dynamics of subtropical rainforests following different levels of disturbance
The capacity of rainforests to recover from logging disturbance is difficult to model due to the compounding interactions between long-term disturbance effects, natural dynamics, site characteristics and tree species regeneration strategies. The aim of this study was to develop a quantitative model using over three decades of data from stands subjected to various levels of disturbance ranging from natural, through increasing intensities of tree removal to intensive logging. Data for trees >10 cm diameter at 1.3 m above the ground (dbh) in subtropical rainforest of north-east New South Wales, Australia were used. Botanical identity of trees at species level, species-specific shade tolerance and size at maturity were used to classify 117 species into five groups. These groups include the emergent and shade tolerant main canopy species, shade tolerant mid canopy species, shade tolerant understorey species, moderate shade tolerant species, and shade intolerant tree species. Multilevel nonlinear regression was used to estimate growth, recruitment and mortality parameters, based on the assumption of variations in tree species performance at both the plot and tree levels. The species group, tree size and competition from larger trees accounted for most variation at the tree level. Significant stand level variables included topography (elevation, slope and aspect), stand basal area, and time since the disturbance. The final model is a classical matrix management-oriented model with an ecological basis and maximum size-dependent parameters of ingrowth and outgrowth. The model provides a tool to simulate stand performance after logging and to assess silvicultural prescriptions before they are applied. Simulations with estimated parameters indicate that moderate harvesting (47% overstorey basal area (BA) removal) in a checkerboard of logged and unlogged patches (group selection) on a 120-year cycle could enable sustainable timber production without compromising the ecological integrity in these rainforests. This is due to reduced logging damage in group selection, which also released retained stems and facilitated recruitment of both shade tolerant and intolerant trees. Single-tree selection (35% BA removal) created small canopy gaps that resulted in low recruitment, a slight increase in the growth of retained stems and recovery time of 150 years. Intensive single-tree selection (50% BA removal) resulted in high logging damage that increased recovery time to 180 years. Intensive logging (65-80% BA removal) decreased the stem density and created larger canopy gaps allowing for high growth rates and recruitment of both shade tolerant and intolerant trees. However, few retained stems and high mortality of recruits, increased the recovery time to 180-220 years. Pre-harvest climber cutting coupled with poisoning of nontimber species followed by logging could allow harvesting on a 300-year cycle. Shorter logging cycles may lead to changes in species composition as well as in the forest structure
Patterns and drivers of plant diversity across Australia
Biodiversity analyses across continental extents are important in providing comprehensive information on patterns and likely drivers of diversity. For vascular plants in Australia, community-level diversity analyses have been restricted by the lack of a consistent plot-based survey dataset across the continent. To overcome these challenges, we collated and harmonised plot-based vegetation survey data from the major data sources across Australia and used them as the basis for modelling species richness (α-diversity) and community compositional dissimilarity (β-diversity), standardised to 400 m2, with the aim of mapping diversity patterns and identifying potential environmental drivers. The harmonised Australian vegetation plot (HAVPlot) dataset includes 219 552 plots, of which we used 115 083 to analyse plant diversity. Models of species richness and compositional dissimilarity both explained approximately one-third of the variation in plant diversity across Australia (D2 = 33.0% and 32.7%, respectively). The strongest environmental predictors for both aspects of diversity were a combination of temperature and precipitation, with soil texture and topographic heterogeneity also important. The fine-resolution (≈ 90 m) spatial predictions of species richness and compositional dissimilarity identify areas expected to be of particular importance for plant diversity, including south-western Australia, rainforests of eastern Australia and the Australian Alps. Arid areas of central and western Australia are predicted to support assemblages that are less speciose or unique; however, these areas are most in need of additional survey data to fill the spatial, environmental and taxonomic gaps in the HAVPlot dataset. The harmonised data and model predictions presented here provide new insight into plant diversity patterns across Australia, enabling a wide variety of future research, such as exploring changes in species abundances, linking compositional patterns to functional traits or undertaking conservation assessments for selected components of the flora
Phocid Seal Leptin: Tertiary Structure and Hydrophobic Receptor Binding Site Preservation during Distinct Leptin Gene Evolution
The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus
Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C above preindustrial levels
Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 49–66, doi:10.1890/08-2289.1.We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and Adélie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, size and distribution, as Earth's average tropospheric temperature reaches 2°C above preindustrial levels (ca. 1860), the benchmark set by the European Union in efforts to reduce greenhouse gases. First, we assessed models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) on penguin performance duplicating existing conditions in the Southern Ocean. We chose four models appropriate for gauging changes to penguin habitat: GFDL-CM2.1, GFDL-CM2.0, MIROC3.2(hi-res), and MRI-CGCM2.3.2a. Second, we analyzed the composited model ENSEMBLE to estimate the point of 2°C warming (2025–2052) and the projected changes to sea ice coverage (extent, persistence, and concentration), sea ice thickness, wind speeds, precipitation, and air temperatures. Third, we considered studies of ancient colonies and sediment cores and some recent modeling, which indicate the (space/time) large/centennial-scale penguin response to habitat limits of all ice or no ice. Then we considered results of statistical modeling at the temporal interannual-decadal scale in regard to penguin response over a continuum of rather complex, meso- to large-scale habitat conditions, some of which have opposing and others interacting effects. The ENSEMBLE meso/decadal-scale output projects a marked narrowing of penguins' zoogeographic range at the 2°C point. Colonies north of 70° S are projected to decrease or disappear: 50% of Emperor colonies (40% of breeding population) and 75% of Adélie colonies (70% of breeding population), but limited growth might occur south of 73° S. Net change would result largely from positive responses to increase in polynya persistence at high latitudes, overcome by decreases in pack ice cover at lower latitudes and, particularly for Emperors, ice thickness. Adélie Penguins might colonize new breeding habitat where concentrated pack ice diverges and/or disintegrating ice shelves expose coastline. Limiting increase will be decreased persistence of pack ice north of the Antarctic Circle, as this species requires daylight in its wintering areas. Adélies would be affected negatively by increasing snowfall, predicted to increase in certain areas owing to intrusions of warm, moist marine air due to changes in the Polar Jet Stream.This project was funded by the World Wildlife Fund and the
National Science Foundation, NSF grant OPP-0440643 (D. G.
Ainley), and a Marie-Curie Fellowship to S. Jenouvrier
Regeneration Changes in Tree Species Abundance, Diversity and Structure in Logged and Unlogged Subtropical Rainforest over a Thirty-Six-Year Period
The long-term effects of logging treatments on rainforest regeneration are difficult to quantify due to compounding interactions between natural dynamics, site characteristics and tree species. The aim of this study was to compare regeneration differences over a 36 year period in stands subjected to various levels of disturbance ranging from natural, through an increasing intensity of individual tree removal to intensive logging. Data for tree
Identification of Behaviour in Freely Moving Dogs (Canis familiaris) Using Inertial Sensors
Monitoring and describing the physical movements and body postures of animals is one of the most fundamental tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural categories to create an ethogram is not overcome yet. The objective of the present study was to develop a “behaviour tracker”: a system composed of a multiple sensor data-logger device (with a tri-axial accelerometer and a tri-axial gyroscope) and a supervised learning algorithm as means of automated identification of the behaviour of freely moving dogs. We collected parallel sensor measurements and video recordings of each of our subjects (Belgian Malinois, N=12; Labrador Retrievers, N=12) that were guided through a predetermined series of standard activities. Seven behavioural categories (lay, sit, stand, walk, trot, gallop, canter) were pre-defined and each video recording was tagged accordingly. Evaluation of the measurements was performed by support vector machine (SVM) classification. During the analysis we used different combinations of independent measurements for training and validation (belonging to the same or different individuals or using different training data size) to determine the robustness of the application. We reached an overall accuracy of above 90% perfect identification of all the defined seven categories of behaviour when both training and validation data belonged to the same individual, and over 80% perfect recognition rate using a generalized training data set of multiple subjects. Our results indicate that the present method provides a good model for an easily applicable, fast, automatic behaviour classification system that can be trained with arbitrary motion patterns and potentially be applied to a wide range of species and situations
5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals
5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na+-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li+, Na+, ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li+, ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein
Functional distinctiveness of major plant lineages
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/1/jec12208.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/2/jec12208-sup-0001-Supp_Info.pd
Characteristic Metabolism of Free Amino Acids in Cetacean Plasma: Cluster Analysis and Comparison with Mice
From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms) since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaption used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future
- …