237 research outputs found

    Determination of Formation Rate Constant of Carrier-Free 111In(III) with EDTA

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Arg-gingipain A DNA Vaccine Prevents Alveolar Bone Loss in Mice

    Get PDF
    博士(歯学)・第1630号(甲第929号)・平成17年3月31日http://jdr.iadrjournals.org/cgi/content/full/86/5/44

    Ab initio study of the modification of elastic properties of alpha-iron by hydrostatic strain and by hydrogen interstitials

    Full text link
    The effect of hydrostatic strain and of interstitial hydrogen on the elastic properties of α\alpha-iron is investigated using \textit{ab initio} density-functional theory calculations. We find that the cubic elastic constants and the polycrystalline elastic moduli to a good approximation decrease linearly with increasing hydrogen concentration. This net strength reduction can be partitioned into a strengthening electronic effect which is overcome by a softening volumetric effect. The calculated hydrogen-dependent elastic constants are used to determine the polycrystalline elastic moduli and anisotropic elastic shear moduli. For the key slip planes in α\alpha-iron, [11ˉ0][1\bar{1}0] and [112ˉ][11\bar{2}], we find a shear modulus reduction of approximately 1.6% per at.% H.Comment: Updated first part of 1009.378

    Radiative pumping in a strongly coupled microcavity filled with a neat molecular film showing excimer emission

    Get PDF
    Strong light-matter interactions have attracted much attention as a means to control the physical/chemical properties of organic semiconducting materials with light-matter hybrids called polaritons. To unveil the processes under strong coupling, studies on the dynamics of polaritons are of particular importance. While highly condensed molecular materials with large dipole density are ideal to achieve strong coupling, the emission properties of such films often become a mixture of monomeric and excimeric components, making the role of excimers unclear. Here, we use amorphous neat films of a new bis(phenylethynyl anthracene) derivative showing only excimer emission and investigate the excited-state dynamics of a series of strongly coupled microcavities, with each cavity being characterised by a different exciton–photon detuning. A time-resolved photoluminescence study shows that the excimer radiatively pumps the lower polariton in the relaxation process and the decay profile reflects the density of states. The delayed emission derived from triplet–triplet annihilation is not sensitive to the cavity environment, possibly due to the rapid excimer formation. Our results highlight the importance of controlling intermolecular interactions towards rational design of organic exciton–polariton devices, whose performance depends on efficient polariton relaxation pathways

    Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds

    Full text link
    The synthesis, infra-red, Raman and NMR spectra and crystal structure of 2, 4, 4- trimethyl-4, 5- dihydro-3H-benzo[b] [1, 4] diazepin-1-ium tetrachlorocadmate, [C12H17N2]2CdCl4 and benzene-1,2-diaminium decachlorotricadmate(II) [C6H10N2]2Cd3Cl10 are reported. The [C12H17N2]2CdCl4 compound crystallizes in the triclinic system (P-1 space group) with Z = 2 and the following unit cell dimensions: a = 9.6653(8) angstrom, b = 9.9081(9) angstrom, c = 15.3737(2) angstrom, alpha = 79.486(1)degrees, beta = 88.610(8)degrees and gamma = 77.550(7)degrees. The structure was solved by using 4439 independent reflections down to R value of 0.029. In crystal structure, the tetrachlorocadmiate anion is connected to two organic cations through N-H...Cl hydrogen bonds and Van Der Waals interaction as to build cation-anion-cation cohesion. The [C6H10N2]2Cd3Cl10 crystallizes in the triclinic system (P-1 space group). The unit cell dimensions are a = 6.826 (5)angstrom, b = 9.861 (7)angstrom, c = 10.344 (3)angstrom, alpha = 103.50 (1)degrees, beta = 96.34 (4)degrees and gamma = 109.45 (3)degrees, Z=2. The final R value is 0.053 (Rw=0.128). Its crystal structure consists of organic cations and polymeric chains of [Cd3Cl10]4- anions running along the [011] direction, In The [C6H10N2]2Cd3Cl10 compounds hydrogen bond interactions between the inorganic chains and the organic cations, contribute to the crystal packing. PACS Codes: 61.10.Nz, 61.18.Fs, 78.30.-jComment: 19 pages, 10 figure

    The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold

    Get PDF
    The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation
    corecore