341 research outputs found

    Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Accumulating evidence suggests that self-renewal and differentiation capabilities reside only in a subpopulation of tumor cells, termed cancer stem cells (CSCs), whereas the remaining tumor cell population lacks the ability to initiate tumor development or support continued tumor growth. In head and neck squamous cell carcinoma (HNSCC), as with other malignancies, cancer stem cells have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In this paper we summarize the current knowledge of the role of CSCs in HNSCC and discuss the therapeutic implications and future directions of this field

    Safety Recommendations for Evaluation and Surgery of the Head and Neck During the COVID-19 Pandemic

    Get PDF
    Importance The rapidly expanding novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged the medical community to an unprecedented degree. Physicians and health care workers are at added risk of exposure and infection during the course of patient care. Because of the rapid spread of this disease through respiratory droplets, health care workers who come in close contact with the upper aerodigestive tract during diagnostic and therapeutic procedures, such as otolaryngologists–head and neck surgeons, are particularly at risk. A set of safety recommendations was created based on a review of the literature and communications with physicians with firsthand knowledge of safety procedures during the COVID-19 pandemic. Observations A high number of health care workers were infected during the first phase of the pandemic in the city of Wuhan, China. Subsequently, by adopting strict safety precautions, other regions were able to achieve high levels of safety for health care workers without jeopardizing the care of patients. The most common procedures related to the examination and treatment of upper aerodigestive tract diseases were reviewed. Each category was reviewed based on the potential risk imposed to health care workers. Specific recommendations were made based on the literature, when available, or consensus best practices. Specific safety recommendations were made for performing tracheostomy in patients with COVID-19. Conclusions and Relevance Preserving a highly skilled health care workforce is a top priority for any community and health care system. Based on the experience of health care systems in Asia and Europe, by following strict safety guidelines, the risk of exposure and infection of health care workers could be greatly reduced while providing high levels of care. The provided recommendations, which may evolve over time, could be used as broad guidance for all health care workers who are involved in the care of patients with COVID-19

    Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models.</p> <p>Methods</p> <p>To investigate the effects of GvHD on the intestinal barrier of the small intestine we utilized an established acute semi allogenic GvHD in C57BL/6 and B6D2F1 mice.</p> <p>Results</p> <p>By assessing the differential uptake of lactulose and mannitol in the jejunum, we observed an increased paracellular permeability as a likely mechanism for disturbed intestinal barrier function. Electron microscopy, immunohistochemistry and PCR analysis indicated profound changes of the tight-junction complex, characterized by downregulation of the tight junction protein occludin without any changes in ZO-1. Furthermore TNF-α expression was significantly upregulated.</p> <p>Conclusions</p> <p>This analysis in a murine model of GvHD of the small intestine demonstrates serious impairment of intestinal barrier function in the jejunum, with an increased permeability and morphological changes through downregulation and localization shift of the tight junction protein occludin.</p

    Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation

    Get PDF
    In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO) to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1) TNF-α production in pleural exudates and in the lung tissues, (2) the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity), (3) the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry) and (4) apoptosis (TUNEL staining, Bax, Bcl-2 expression). Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction

    Tumor Necrosis Factor-α and Muc2 Mucin Play Major Roles in Disease Onset and Progression in Dextran Sodium Sulphate-Induced Colitis

    Get PDF
    The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC

    Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Get PDF
    Background: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings: Male balb/c mice were assigned randomly to either sham burn (control) or 30 % total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression

    Loss of Guanylyl Cyclase C (GCC) Signaling Leads to Dysfunctional Intestinal Barrier

    Get PDF
    Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC-/-) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN-/-) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury
    corecore