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Abstract

The extracellular matrix plays a number of important roles, among them providing structural support and
information to cellular structures such as blood vessels imbedded within it. As more complex organisms have
evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling
from the vasculature has assumed progressively greater importance. This review will focus on the molecules
of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surround-
ing cells to initiate or terminate processes involved in blood vessel formation.
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Introduction

Although originally articulated for the purposes of
architecture theory [1], the adage of ‘form follows 

function’ also applies in a biological context.
Examples of this concept are replete throughout biology
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(perhaps more accurately stated as ‘function follows
form’) as natural selection hones the ‘forms’ (mole-
cules, tissues, etc.) to better target the ‘functions’
being selected.The extracellular matrix (ECM) exem-
plifies this process from its initially discovered prop-
erties of providing a structural environment or scaf-
fold for particular groups of cells to assemble into tis-
sues. Later, research has uncovered that not only
does the ECM provide a platform for these tissues,
the composition of the ECM manifests as specific
forms, which serve to further guide the production
and assembly of specific tissues. Via receptors on
the cells interacting with the ECM, a feedback-sig-
nalling process between the cells and the ECM takes
place, which guides the developmental process of
the tissue and, even after its maturity, allows tissues
to respond to various environmental stimuli.

Phylogenetic data generated from relatively recent
completion of genome sequencing projects have
shown that the molecules of the ECM, especially
ones related to cell–matrix adhesion, are ‘ancient
and exquisitely conserved in multicellular animals’
[2]. Even Coelenterates have basement membranes
as well as more complex animals. Recent work
involving the sequencing of other metazoans has
revealed that the majority of ECM genes have
evolved through duplication of pre-existing genes
present in our vertebrate ancestors [3]. Thus, ECM
genes are over-represented in the vertebrate
genome giving ample grist for the evolutionary mill.

Control of blood vessel formation is illustrative of
the signalling process between the ECM and cells.
Recent work, which will be discussed in the review,
demonstrating how the ECM is involved in regulating
developmental and well as adult blood vessel vascu-
larization programs will be the focus. The first part of
the review will familiarize the reader with the major
players in the ECM. In the second part, the focus will
be on the signalling aspects of the ECM and what
has been discovered concerning how those mole-
cules signal to cells to mediate vascularization.

ECM: composition and structure

Like the cosmos, the tissues of the human body are
composed of mostly (extracellular) space ...and cells.
The molecules secreted by the cells occupying these

tissues interact to create a complex network, which
constitutes the ECM. As there are many different tis-
sues in the body, so are there different organizations
of cells and matrices. Examples exist from where the
proportions vary from mostly matrix to a few cells
(connective tissue) and others where the cells are
tightly packed together and the matrix is merely a
thin sheet on which they rest (epithelia). Also, the
composition of macromolecules gives rise to various
forms of tissue. Calcification of the matrix occurs in
bones and teeth for production of very dense materi-
als while in tendons these structures are organized
into elastic chords for tensile strength. What is it
about the molecules of the ECM and their properties
which allow for such varied properties?

Broadly speaking, two classes of molecules 
are produced by the ECM: fibrous proteins and gly-
cosaminoglycans (GAGs). The fibrous proteins are
mainly collagen, laminin and elastin. These fibrous
proteins, which participate both as a scaffold and in
adhesion in matrix structures, are embedded in
GAGs. The chemical properties of GAGs enable
them to be highly hydrated giving them gelatinous
properties or making them what has been termed a
‘ground substance’. This substance imparts a physi-
ological function by facilitating resistance of com-
pressive forces while also allowing diffusion of vital
nutrients between the blood and tissue. Further dis-
cussion of the structure and properties of the fibrous
proteins and GAGs in the ECM is continued by mol-
ecule below. A thorough discussion of all the mole-
cules would fill a book; therefore, brief descriptions
will be given, which are pertinent to the role ECM in
neovascularization, and reviews will be cited for
those interested in more detailed information.

Collagen

The collagens are the most abundant proteins in
mammals and in the ECM [4]. Primarily in skin and
bone, collagens make up 25% of total protein mass.
Their defining structural feature is a triple-stranded
helical structure of three polypeptide chains, which
are referred to as the � chains. These chains are
composed of a series of three amino acid (Gly-X-Y)
sequences where X is typically proline and Y is, com-
monly, a post-translationally modified form of proline
called 4-hydroxyproline. Because of the stereochem-
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ical constraints of triple-helix formation, glycine, the
amino acid with the smallest side chain (a hydrogen),
is the only amino acid small enough to occupy the
interior of the triple-stranded, �-chain structure
termed procollagen. This three amino acid structure
allows for tight packing of the triple-stranded chains
into rod-like structures with the amino acid side
chains of the X and Y molecules on the outside of the
rod. These side chains are presumed to help direct
the self-assembly of the procollagen molecule. Once
secreted, proteolytic enzymes remove the
propolypeptides from procollagen allowing it to form
much longer collagen fibrils in the extracellular
space. The driving force for this assembly is pre-
sumed to be the insolubility of the collagen fibrils ver-
sus that of procollagen. Aggregations of these fibrils
(10–30 nm diameter) form collagen fibres (500–3000
nm in diameter), which are then organized to rein-
force the tensile strength of the respective tissue in
which they are present [4].

With 25 different collagen molecules and their abil-
ity to assemble with varied combination of � chains,
these molecules have been organized into classes
based on their macromolecular properties. Fibril
forming or fibrillar collagens (Types I, II, III, V and XI)
are the most common and account for 90% of body
collagen. These types are involved in forming the
classical examples of collagen structure for functions
in tissues such as bone, skin, tendons and liga-
ments. Fibril-associated or FACIT collagens (Types
IX, XII, XIV, XVI and XIX) are collagens that do not
form fibrils. They are found attached to the fibril-form-
ing collagens forming lateral associations. Thus, it is
thought that these collagens are involved with the
ordering of collagen fibrils among each other and
with other matrix molecules. Network-forming colla-
gens (types IV, VII, VIII and X) form net-like or mesh-
work structures used in creating sheet-like structures
such as in the basement membrane (type IV) or in
anchoring fibrils (type VII), which link basement
membranes to underlying collagen and laminin in the
ECM [5, 6]. Interruptions in the Gly-X-Y repeat amino
acid sequence of collagen with non-collagenous
sequences are what allow variability in forming differ-
ent three-dimensional structural shapes (i.e. fibrillar
versus network forming versus fibril associated).
Type IV collagen is the most abundant member of the
basement membrane and is one of the key mole-
cules in its formation due to the ability of this collagen
to self-assemble [7, 8]. Another class of collagens

whose members seem to play a critical role in neo-
vascularization have been named multiplexins (types
XV and XVIII) [9, 10] as their structures contain col-
lagen � chains but have different structural features
from the classical collagens such as GAGs attached
[11, 12]. Although it contains the classic triple-helical
collagen domains and behaves as classical collagen
[12], type XVIII collagen displays heparan sulfate
GAGs [13], making it not only a collagen but also a
proteoglycan [9, 14]. Type XVIII collagen also con-
tains multiple interruptions in the triple-helical
domain as well as a unique NC1 (non-collagenous)
domain at the C-terminus. Two human variants are
expressed resulting from transcription from two dif-
ferent promoters [15] creating characteristic tissue
expression patterns with high levels in liver, lung and
kidney. Furthermore, immunohistochemistry demon-
strated that the short protein localizes to vascular
and basement membranes while the majority of the
long form is expressed in the liver [16, 17]. Type XV
collagen has similar sequence similarity to type XVIII
collagen suggesting a common ancestor (reviewed
in ref. [11]). Type XV has a larger N-terminal and a
smaller C-terminal domain with gene expression in
all analysed tissues but high levels especially in
heart, placenta and skeletal muscle [18, 19]. Further
details concerning other classes and assembly of
collagen have been described [4, 20].

Laminin

The first being discovered and isolated over 20 years
ago, laminins are currently a family of 12 heteror-
trimeric glycoproteins, which are usually found in
basement membranes. They have been shown to
have migratory, adhesive and signalling functions
[21, 22]. From a combination of 5 �, 4 � and 6 � sub-
units, 1 each of these individually coded protein
chains assemble to form a large coiled-coil, quar-
ternary structure with 3 short arms and 1 long arm
[23] of which 15 structures are currently known or
predicted with certainly more to follow. Though all
basement membranes contain laminin, each con-
tains its own combination of selected isoforms, sug-
gesting that this heterogeneity allows different base-
ment membranes to have individual functional roles
in tissues while having the same common structure
[24]. Laminins have one or more small globular
domains at the end of their short and long arms,
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which mediate interaction with other molecules or
laminins. The laminin � chains have large globular
domains at their C-termini, which is the G-domain.
This domain consists of five modules (LG1-LG5)
being grouped in three (LG1-LG3) or two (LG4-LG5)
and connected by a linker domain [24]. Most of the
cell surface binding occurs through these domains.
Blood vessels have been reported to express laminin
�4, �5, �1 and �1 chains, which suggest that
laminin-8 and laminin-10 are involved in their forma-
tion. Also, vascular endothelial cells have been
shown to produce these isoforms [21, 25, 26].

Fibronectin

Besides proteins that link together to form various
scaffolds and structural features, the ECM is com-
posed of other proteins with multiple protein binding
domains, which adhere to the scaffolding molecules
and to cell surface receptors, therefore contributing not
only to the organization of the ECM but to the cells
within it. One of the first of these proteins to be char-
acterized was fibronectin (reviewed in refs. [27, 28]).
Fibronectin is a large, secreted glycoprotein dimer
(each chain ~ 270 kD) with the chains joined by disul-
fide bonds at one end. It exists in multiple isoforms,
one of which is a soluble form found in blood and other
body fluids where it is thought to be involved with
blood clotting and wound healing. The other forms of
fibronectin are assembled on the surface of cells and
then become part of the ECM as insoluble fibronectin
fibrils [28]. Distinct from the collagen that undergoes
self-assembly, it is thought that fibronectin must be
activated to assemble into fibrils [29, 30]. This activa-
tion process is associated with integrin binding sites
as well as other proteins, which prevent the fibril form-
ing process.The process of fibril assembly also seems
to be tied to the regulation of actin filaments inside the
cell. Fibronectin fibrils that form near the surface are
usually aligned with intracellular actin stress fibres. If
these cells are treated with cytochalasin, a drug which
disrupts actin filament formation, fibronectin fibrils dis-
sociate from the cell surface by what seems to be an
integrin mediated process [31].

The primary structure of the fibronectin protein
domains consists of mostly three types of repeating
modules [32]: type I, II and III are numbered accord-
ing to their positions from N-terminus to C-terminus in

the fibronectin protein (i.e. III2 is the second type III
repeat in the molecule) [27, 28]. The other types of
domains found in fibronectin are those which are uti-
lized for binding to heparin, collagen and other
fibronectin molecules as well as to other cell surface
receptors (i.e. integrins, discussed below). Each of
these domains of fibronectin is encoded by an exon.
Fibronectin isoforms are composed typically of about
50 exons, each encoding either the repeating mod-
ules or specific structural binding domains, all of
which can be rearranged by alternative splicing of the
exons [33]. In fact, fibronectin, like collagen, is thought
to have evolved through multiple exon duplication [34,
35]. Of all the modules, the most abundant is the type
III fibronectin repeat, which is among the most com-
mon of all the domains in vertebrates and contains
the sequence that binds integrins. This tripeptide
motif [36, 37], which is composed of amino acids
RGD (arginine, glycine, aspartic acid), is the central
feature of the integrin binding site [38], and even very
short peptide sequences containing this motif can
effectively compete with fibronectin binding to cells.

Elastin

Elastin is a hydrophobic protein of the ECM, which
allows tissues such as skin and blood vessels to have
the required ability to transiently stretch. The 72 kD pre-
cursor form of the protein, tropoelastin, is secreted
into the extracellular space where these molecules
become highly cross-linked to each other via a cop-
per-requiring, lysyl oxidase enzyme, which form net-
works of elastin fibres and sheets [39]. The composi-
tion of elastin is mainly two types of small segments
that alternate along a polypeptide chain: one seg-
ment, � helical rich, is composed of alanine and
lysine chains, which are where the cross-links form
between the molecules, and the second segment is
composed of hydrophobic segments responsible for
the molecule’s elastic properties. The cross-linking
reaction leads to the formation of tetravalent bonding
of elastin, lysinonorleucine, desmosines and
isodesmosines (the last three are lysine derived
products from cross-linking), which leads to the poly-
merization of tropoelastin into insoluble elastin [40,
41]. How the structural conformation of elastin fibres
contributes to the functional elasticity of the fibres is
still unknown, although it is thought that the random
coil structure of the molecules cross-linked into a net-
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work gives it the ability to stretch like a rubber band
[39]. Elastic fibres contain other molecules besides
elastin. A sheath of microfibrils covers an elastin
core. These microfibrils contain a number of distinct
and different glycoproteins. One such family of
microfibril resident proteins are the fibrillins whose
members precede elastin in developing tissues and
form a scaffolding structure on which elastin fibres
are attached [39, 42]. Comprising 50% of the dry
weight of major arteries, elastin is the most promi-
nent ECM protein in arteries [43]. In vessels, elastic
lamina alternate with rings of smooth muscle forming
a strong, flexible part of the arterial wall [43, 44].

Nidogen

Nidogens (or entactins) are one of the four key com-
ponents of basement membranes (the others being
laminin, collagen IV and a proteoglycan) [45]. In
mammals, there are two nidogens encoded by dis-
tinct genes [46]. Structurally, nidogens are sulfated
glycoproteins that have three globular domains
(G1–G3) separated by rod-like domain. G1 and G2
are at the amino terminus connected by a small link-
age region while G3 is at the C-terminal domain con-
nected by the rod-like region, which contains EGF
repeats (reviewed in ref. [24]). Binding studies with
nidogen-1 demonstrate a wide variety of basement
membrane targets, and thus, it is suggested that
these molecules perform a connection function
between the collagen IV and laminin networks while
integrating other basement membrane members into
the ECM [47–49]. Nidogen-1’s highest affinity binding
site has been localized to one of the EGF repeats on
the laminin �1 chain [50]. Nidogen-2 has been shown
to be involved in cell adhesion, which also involves
�3 �1 and �6�1 integrins [51].

Glycosaminoglycans

As previously mentioned, GAGs are the molecules
attributed to providing the ‘ground substance’ of the
ECM. These molecules are unbranched carbohy-
drate polymers composed of repeating disaccharide
units consisting of N-acetylglucosamine (GlcNAc) or
N-acetylgalactosamine (GalNAc) amino sugars AND

glucuronic (GlcA) or iduronic (IdoA) acid. The combi-
nations and linkages combine to produce different
functional chains and nomenclatures. Hyaluronan,
composed of GlcNAc �1-3GlcA �1-4 repeating link-
age, is the simplest known GAG and is abundant in
skin, synovial fluid and skeletal tissues and was orig-
inally isolated from the vitreous humour of the eye
[52]. The remaining GAG structures are attached to
protein cores, which result in a proteoglycan.
Heparan sulfate (GlcNAc �1-4GlcA�1-4) and chon-
droitin sulfate (GalNAc �1-4GlcA�1-3) both are
GAGs, which are attached to protein core molecules
to produce proteoglycans such as perlecan, synde-
cans or glypicans. These heparan and chondroitin
chains are further modified after their synthesis by
epimerization (glucuronic acid to iduronic acid), N-
deacetylation-N-sulfation, 2-O-sulfation, 3-O-sufla-
tion and 6-O-sulfation (reviewed in refs. [53, 54]).
Modification of these core proteins (O-linked modifi-
cation versus the N-linked modification of glycopro-
teins) occurs at serine or threonine sites in the pro-
tein. The hydroxyl side chains of these amino acids
are modified first with a xylose residue followed by a
linkage tetrasaccharide of which the final attachment
of � �GalNAc or �GlcNAc determines whether the
chain will be polymerized as a chondroitin sulfate or
a heparan sulfate backbone, respectively (reviewed
in ref. [53]). Matrix proteoglycans tend to display
chondroitin sulfate or the further epimerized der-
matan sulfate while the membrane proteoglycans
tend to have heparan sulfate (as with most rules,
these are only generally true as some syndecan fam-
ily members have both heparan and chondroitin sul-
fate). Other ECM molecules can attach to the GAG
part of the chain, which may be displayed on differ-
ent core proteins. This fact can make sorting, which
proteoglycan is responsible for certain molecular and
phenotypic effects, especially in signalling, challenging.

Numerous proteoglycans are involved in the ECM.
Agrin is an abundant proteoglycan of most basement
membranes but mainly functions at the neuromuscu-
lar junction (reviewed in ref. [55]). As mentioned above,
both collagen XV and collagen XVIII are proteogly-
cans with XV containing chondroitin sulfate [56] while
XVIII has heparan sulfate [13]. Perlecan and the syn-
decans have been well characterized in terms of
basement membrane and focal adhesion assembly
with apparent roles to play in vascular formation and
neoangiogenesis, and those will be discussed.
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Perlecan

Perlecan is a large (~470 kD protein core, up to ~800
kD when glycanated) proteoglycan with many 
O-linked glycosylation and three to four heparan sul-
fate sequences attached. There is only one gene
encoding perlecan (Hspg2) in mammals and, similar
to other matrix proteins, due to its varied modules,
probably arose by gene duplication and exon shuf-
fling [57]. The protein core is composed of five mod-
ules, which allow for a variety of binding partners
from classical ECM components such as laminin-1,
collagen IV, nidogen-1 and fibronectin to growth fac-
tors, which include fibroblast growth factor-2 (FGF2),
vascular endothelial growth factor (VEGF) and
platelet-derived growth factor (PDGF) (reviewed in
ref. [58]) [59]. Although embedded in the basement
membrane, perlecan also associates with the cell
surface via interaction with �2�1 integrin, which also
binds to fibrillar collagen [60].

Syndecan
Syndecans are a family of type I transmembrane pro-
teoglycans, which have four family members in verte-
brates (Syndecan-1, -2, -3, -4). These proteoglycans
consist of a short, variable extracellular domain with
attachment sites for three to five heparan sulfate or
chondroitin sulfate chains, a single span transmem-
brane domain and a conserved cytoplasmic tail,
which contains two highly conserved (C1 and C2)
regions and one variable (V) region. In the extracel-
lular domain, the GAG chains are what mediate inter-
action between growth factors and their receptors
such as FGF2/FGF receptor for which syndecan has
been shown to function as a co-receptor (reviewed in
ref. [61]). Also, these chains mediate interaction with
ECM proteins such as fibronectin, and it has also
been suggested that the chondroitin and heparan
chains of syndecan-1 and syndecan-4 mediate ker-
atinocyte binding to laminin-5 [62]. Through extracel-
lular and intracellular domain swap experiments, the
transmembrane domain has been shown to be suffi-
cient for oligomerization of syndecan-2 and synde-
can-4 [63]. Clustering of syndecan-4 (by antibodies
and by Fc-receptor-Syndecan-4 chimeras) has been
demonstrated to induce FGF2 endocytosis in a
clathrin and dynamin independent process, which
requires syndecan-4 independent activation of Rac1
[64]. In the cytoplasmic domain, a point mutation in

the PDZ binding domain (a domain named for the
motif associated with intracellular signalling proteins
in which it was first described: Post synaptic density,
Discs large, Zona occludens-1) located at the tail of
the syndecan-4 molecules has been shown to
reduce migration in endothelial cells suggesting a
role for this domain in endothelial cell migration [65].
Syndecan-4 also participates with integrins and
fibronectin in focal adhesion formation (sites of tight
adhesion to the underlying extracellular matrix) by
modulating focal adhesion kinase formation [66] and
being recruited into focal adhesion complexes with
fibronectin after activation by protein kinase C � [67].

Receptors for ECM molecules
Assembly of the vast network of molecules into an
ECM is only part of the picture, as cells must have
some mechanism of attaching to the matricellular
environment. The syndecans and other transmem-
brane proteoglycans do function as coreceptors and
provide some of the anchoring, but the majority of
receptors on animal cells for binding ECM compo-
nents are the integrins (reviewed in ref. [68]).
Consisting of two transmembrane heterodimers (�
and �), which are non-covalently associated glyco-
proteins, integrins have only been found in meta-
zoans [69]. Indeed, worms only contain two � and
one � subunits forming the organism’s two integrins,
while the number in mammals is estimated to be 18
� and 8 � subunits with 24 combinations of protein
having been identified [70]. A considerable amount of
redundancy exists in that many matrix proteins bind
multiple integrins. Also, integrins have a lower bind-
ing affinity for their targets than other receptor mole-
cules but compensate by being up to 100-fold higher
in cell surface concentration. This weaker, multivalent
binding has been suggested to allow for efficient but
easily reversible interactions. Integrin binding also
requires divalent cations (Mg2+ or Ca2+) as well as an
aspartate or glutamate (the RGD sequence men-
tioned above in Fibronectins) residue, which are
involved in coordination of the divalent cation
[71–73]. To possess the ability to ‘ground’ cells in the
membrane, on the cytoplasmic side, most integrins’
connection to the cytoskeleton is mediated by intra-
cellular anchoring proteins (i.e. talin, �-actin, filamin).
Attached to the integrin � subunit, these anchoring
proteins attach to actin or to other anchor proteins
such as vinculin. Thus, integrin clustering leads to
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production of focal adhesions between the ECM and
the cell [74]. Integrins also are involved in signalling
processes between matrix proteins and the cell. The
clustering of integrins by matrix proteins has been
shown to activate focal adhesions, which are mediat-
ed by a tyrosine kinase, focal adhesion kinase (FAK).
FAK is recruited to focal adhesions where these mol-
ecules cross-phosphorylate tyrosine molecules on
each other creating docking sites for the Src family of
tyrosine kinases, which produces even greater bind-
ing sites for other signalling proteins (reviewed in ref.
[75]). This process could be referred to as outside-in
signalling, which is the method by which most sig-
nalling occurs. Integrins, however, also have the abil-
ity to participate in a process called inside-out sig-
nalling [76, 77]. By allowing activation of inactive inte-
grins already on the cell surface, inside-out signalling
allows for an immediate adhesion response without
having to permit time for secretion or synthesis of the
integrins. This process allows platelets, for example,
when activated by injury, to activate integrin binding
to fibrinogen to form a platelet clot.

Although integrins are the major type of ECM
receptor, other receptor molecules, especially in
endothelial cells, have been shown to exist [78].
Dystroglycan is a membrane-spanning glycoprotein
heterodimer composed of � and � dystroglycan non-
covalently associated subunits translated as a
propeptide and proteolytically cleaved into two pro-
teins [79]. It was originally isolated from the dys-
trophin-glycoprotein complex, which is thought to
provide structural stability to the sarcolemma, and
mutations in this complex have been associated with
several muscular dystrophies (reviewed in ref. [80]).
ECM attachment of dystroglycan is mediated
through the � subunit O-linked, mucin type carbohy-
drates to laminin-2, and this interaction has been
shown to be dependent on the glycosylation of dys-
troglycan. Cytoplasmic attachment of the transmem-
brane � subunit is accomplished through dystrophin,
which binds to the actin cytoskeleton [81, 82].
Dystroglycan has been shown by cDNA cloning and
western blotting to be expressed in bovine aortic
endothelial cells and this interaction was mediated by
laminin-1 [83].

Evaluation of ECM molecules and
their modulators in vessel formation

Up to this point, the molecules involved in the ECM,
with particular attention to those in vascularization,
have been described in terms of their synthesis and
their relationship to the other ECM members in form-
ing the matrix. Now, with the continued use of vessel
formation as a framework, experiments involving
these molecules to elucidate their role in the vascu-
larization process will be examined.

Angiogenesis as a term is frequently referred to as
the process of new blood vessel growth. In the field,
however, as previously described [84], this term is
associated with a specific biological process, which
only partially covers the events involved in new blood
vessel formation. In this review, neovascularization
refers to the general process of blood vessel growth
and broadly involves vasculogenesis, arteriogenesis
and angiogenesis. Vasculogenesis describes the
process of de novo formation or remodelling of pre-
existing channels by angioblasts (embryonic devel-
opment) or circulating vascular progenitor cells (adult
neovascularization). Although it is the main player in
embryonic development, the functional significance
of vasculogenesis in ischemia or peripheral circula-
tion has not been established (reviewed in ref. [84]).
Arteriogenesis is defined as the process of matura-
tion or remodelling of existing or newly formed arter-
ies [85, 86]. The matter of whether arteriogenesis
occurs via remodelling of pre-existing vessels or by
formation of new vessels from progenitor cells is con-
troversial. Lastly, angiogenesis refers to the process
of forming new capillaries from post-capillary venules
and is mostly driven by tissue hypoxia [84, 87].

As has been previously described and will be
futher illustrated below, the ECM plays critical roles in
most of the processes of blood vessel formation. The
detailed processes involved in de novo and adult
blood vessel formation have been extensively
reviewed [88–94]. In blood vessel formation of
embryonic development, vasculogenesis and angio-
genesis participate in the formation of the vascula-
ture. Briefly, in vasculogenesis, hemangioblasts are
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derived from groups of FGF2-stimulated splanchnic
mesoderm cells as precursor cells of blood vessels
and blood cells [95]. VEGF–VEGF receptor 2
(Flk1/KDR) signalling mediates the differentiation of
hemangioblasts into cell aggregates or blood islands
[96]. Outer cells of blood islands differentiate into
angioblasts (blood vessel precursors) while the inner
cells become hematopoietic stem cells (blood cell
precursors). Next, angioblasts become endothelial
cells, which form the internal lining of blood vessels
and, later, organize into tube structures creating a
network of capillaries or the primary capillary plexus.
VEGF–VEGF receptor 1 (Flt1) controls the formation
of tubes from blood islands [97, 98]. Lastly, angiopoi-
etin-1-Tie2 receptor mediates recruitment of smooth
muscle-like pericytes to cover capillaries [99–101].
During angiogenesis, this primary network is remod-
elled, pruned and specialized into arterial and vein
capillary beds [88]. Organ capillary networks, which
are formed from inside the organs and are not grown
from larger vessels, are then joined to the other form-
ing network to build the circulatory system (reviewed
in ref. [93]). It is in the angiogenic process that
research has primarily focused on how ECM compo-
nents provide direction for regulating vessel cell
migration, proliferation, differentiation and survival.
Thus, these processes are the experimental meas-
ures used to gauge angiogenic potential, especially

in vitro. Genetic manipulation of defined angiogeneic
models and construction of mutations in cells and
animals are also utilized to provide evidence as to
whether confirmation or denial is appropriate in
these in vitro hypotheses. An example is provided
(Fig. 1) where arteriogenesis of synectin (an adapter
protein found in the syndecan-4 pathway) null mice is
examined. The femoral artery ligation model was
employed to demonstrate a profound reduction in
recovery of synectin in hindlimb reperfusion of
synectin null versus wildtype mice. This hindlimb in
vivo data correlated with previous in vitro data, which
had revealed that primary endothelial cells isolated
from synectin knockout mice showed reduced migra-
tion in comparison to cell isolated from wildtype mice
in a cell wounding/migration assay.

Determination of essential 
ECM components of vessel formation

Since ECM components are the scaffolding that
girds the vascular system, one collection of muta-
tions that would be expected to effect vessel forma-
tion would be disruption of the basement membrane
structure or attachment of components to the struc-
ture resulting in no or malformed configurations.
While these phenotypes involving tube formation and

Fig. 1 Effects on arteriogenesis by synectin disruption in mice. (A) Laser Doppler images of the time course of perfusion in hindlimbs
of synectin wildtype (WT) and null (KO) mice (perfusion is indicated by colour where red > yellow > green > blue) (B) Quantitative analy-
sis of laser Doppler images indicates significant alterations in hindlimb reperfusion immediate post and 14 days after femoral artery lig-
ation in synectin null mice (black bars).Means +/- SEM, P < 0.05 from Chittenden et al.Dev.Cell. (2006), 10: 783--795.
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vessel stability certainly do occur, other experiments
show that certain ECM molecules are not necessary
for structure, but are critically involved in cell guid-
ance (migration or chemotaxis), proliferation or via-
bility. In this section, recent experiments are high-
lighted concerning ECM component(s) involved in
vessel formation. Since certain components of the
ECM can play necessary roles in certain initial
embryonic developmental programs, it can be diffi-
cult to determine if said molecule is not also critical
in later programs without clever genetic techniques
(i.e. tissue specific and/or drug inducible, promoters
and recombinases). Thus, examination will focus on
experiments that have been determined to be related
to vessel formation (Table 1). Experiments involving
tumour angiogenesis will not be discussed except
where there is overlap with the focus of the current
paper (many reviews of this subject are available
[102–106]). Also, matrix metalloproteases (MMPs)
have been covered in a review in this series [107]
and by others [108–111].

Collagen-I and laminins are important for 

vessel structural integrity and provide contrasting

signals in angiogenesis
As previously described in Collagens, Collagen-I is a
member of the fibril forming family of collagens,
which make up a large percentage of the ECM in the
body and is a constituent of many tissues that under-
go embryonic angiogenesis during development
[112]. In vivo, a mouse knockout model of type I col-
lagen generated by insertional mutagenesis pro-
duced a lethal phenotype between day 12 and day
14 of gestation [113]. While distribution of other col-
lagens, laminin and fibronectin were not effected, no
type I collagen was detected in the mutant embryos.
The mutants displayed a phenotype of mechanical
instability of vessels due to rupture as well as defects
in hemopoietic cells of the liver [113]. In vitro, bovine
aortic endothelial cells synthesize type I collagen and
its production is limited to the cells forming capillary
tubes in the endothelial cell monolayer [114, 115].
Also, human umbilical vein endothelial cell monolay-
ers have demonstrated a robust angiogenesis with
type I collagen and sulfated GAGs [116, 117]. In the
embryo, capillary development has been shown to
begin with endothelial precursor cells transitioning to
a spindle-shaped morphology, followed by alignment
into cord-like structures that form a network

[118–121] (reviewed in ref. [122]). These cord-like
structures undergo maturation, forming lumens for
blood transport and the endothelial cells attach to
basal lamina [119, 123]. Inhibitors of collagen triple
helix formation or fibrillogenesis prevent angiogene-
sis in the chick embryo [116]. Type I collagen, there-
fore, would seem to be involved in activation of
endothelial cells for angiogenesis. Blood vessels,
however, do not contain type I collagen but contain
mainly type IV collagen and laminin. Thus, a model
[94, 122] has been proposed, which suggests that
ECM signalling regulates endothelial cell morpho-
genesis and sprouting. In the model, blood vessel
endothelial cells are normally not exposed to type I
collagen because of the continuous basement mem-
brane. Induction of angiogenesis would then be coin-
cident with degradation of the basement membrane
and exposure of endothelial cells to type I collagen.
This exposure would activate the endothelial cells
and drive sprout formation until the regeneration of a
continouus basement membrane. In support of the
theory, molecular data show that, in vivo, in endothe-
lial cells isolated from the microvasculature, type I
collagen induced morphogenesis is mediated by
selective VEGF induction [124] of �1�1 and �2�1
integrins [125]. Thus, molecularly, it is proposed that
type I collagen via integrins activates Src and Rho
pathways and suppresses Rac and protein kinase A
pathways resulting in induction of actin stress fibres,
disruption of VE-cadherin and precapillary cord for-
mation while cells plated on laminin-1 induce Rac
activation (which has been shown to reduce Rho) but
do not induce endothelial cell morphogenesis [122].
Further support is demonstrated by Src kinases
modulating vascular morphogenesis [126]. These
kinases have been suggested to be involved in
angiogenesis by regulating vascular permeability
[127]. Also, Rho family members have been shown to
be involved in actin cytoskeletal changes (reviewed
in ref. [128]). Finally, through the use of Src and Rho
inhibitors and mutants, activation of Src and Rho
were shown to be directly involved in type I collagen
activated human dermal endothelial cell capillary
morphogenesis, while laminin-1 produced a consis-
tent activation of Rac but did not induce capillary for-
mation [122]. In vitro, induction of capillary morpho-
genesis has also been shown via the use of peptide
mimetics to require the engagement of �2�1 integrin
by a single type I collagen integrin binding site, which
appears to signal via p38 mitogen activated protein
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Knockout Phenotype(s) Comments References

�1(I) collagen Mutants survive until E12-E14, death due to
rupture of blood vessels

Fibrillar collagen type I may be important for
mechanical stability of blood vessels

[113]

�1(III) collagen Model of Ehlers--Danlos syndrome type IV,
90% die perinatally, 10% survive until adulthood

with death due to rupture of blood vessels

Like type I, fibrillar collagen type III may be impor-
tant for mechanical stability of blood vessels

[135]

�1(IV)2 a2(IV)
collagen

Structural deficiencies in basement mem-
brane, failure of Reichert’s membrane,
lethality at E10.5-E11.5 with vascular

bleeding in the heart and arteries

Mechanical demands on basement membrane
as size of embryo increased and circulation
started, instability in basement membrane

structure

[136]

�1(XVIII) 
collagen

No obvious defects in vascular patterning or
capillary density in most organs two-fold
increase in microvessels of knockouts in
modified aortic explant assay, endostatin

admin. negates increase to wildtype levels

Increased endothelial cell adhesion in null
mice may allow for greater vessel stability,

also large increase of adherence in knockout
on fibronectin matrix

[171–173]

Heat shock 
protein 47

Abnormally oriented epithelial tissues,
embryonic lethality at E11.5 or earlier due

to ruptured blood vessels

Hsp47 is a molecular chaperone of triple helix
formation of type I collagen a chain, seems to
disrupt proper formation of type IV collagen

[137]

�4 chain of
Laminin

Lethal at day E11.5 and newborns, ruptures
in microvascular cell wall result in subcuta-

neous hemorrhaging, which were exposed to
greater stress during birth. In vivo angiogene-

sis assays result in 50% of mice sacrificed
due to chronic hemorrhages

Weakened capillary basement membrane
results in subcutaneous hemorrhaging. Small
group survive may be due to expression of a5

laminin which begins after birth

[142]

Fibronectin Range of phenotypes including deformed
heart and embryonic vessels, E8.0 until

death consisted of low numbers of primitive
blood cells and embryonic vessels of larger

size in the embryonic vasculature

Mesenchymal defects due to deficits in prolif-
eration, adhesion and migration of cells

[145]

Perlecan Between E10 and E12, 50% of mice die
due to hemorrhage of pericardial cavity,
cephalic and cartilaginous abnormalities

result in death of respiratory failure at birth

Failure of basement membranes due to
mechanical stress

[156]

Perlecan
(reduced heparan

sulfate)

Delayed wound healing, retarded FGF2-
induced tumour growth and impaired angio-

genesis in cornea micropocket assay,
enhanced smooth muscle cell proliferation

resulting in intimal hyperplasia

Reduced heparan chains disrupt modulation
of FGF2, VEGF and other growth factors.

[158, 159]

Syndecan-1 Higher degree of inflammation, delayed
wound healing

Delay in wound healing possibly due to
defects in granulation tissue and angiogenesis

[162]

Syndecan-2 Essential for sprouting angiogenesis in
zebrafish based on morpholino knockdown

Modulation of VEGF signalling by syndecan-2
disrupted

[164]

Syndecan-4 Delayed wound healing in heterozygous
and homozygous mice, diffuse and degen-

erated vessels in placental labyrinth

Modulation of angiogenesis via heparan chains or
disruption of fibronectin binding, reduces 

anti-thrombin binding sites by fewer heparan chains
and may result in a more procoagulant state

[166, 167]

*All mutations are in mice except for syndecan-2.

Table 1 Extracellular matrix molecule null mutations involved in blood vessel formation*
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kinase and FAK inactivation [112]. One problem with
the model, however, is the use of laminin-1 as the
substrate for the in vitro cell studies. Laminin-1
(�1�1�1) is a prototype laminin, frequently used with
in vitro cell adhesion and migration assays, and does
not occur in capillary endothelia basement mem-
branes, but is purified from Engelbreth–Holm–Swarm
(Matrigel) tumour ([129, 130] (reviewed in ref. [131]).
The endothelial basement membrane contains �4
and �5 chains of laminin, which would correspond to
laminin-8 (�4�1�1) and laminin-10 (�5�1�1) for
endothelial cell binding [131]. The �1 chain does
occur in the meningeal epithelium and the parenchy-
mal basement membrane (which is the collective
name for the meningeal and astroglial basement
membranes). Further experimental proof of this
model of sprouting angiogenesis will have to wait for
future experiments.

The function of collagens in the 

blood vessel basement membrane
In the same group as type I collagen, type III colla-
gen is a fibrillar collagen composed of three �1(III)
chains and is also a major component of the ECM.
Mutations in the Col3A1 gene encoding type III colla-
gen appears to result in Ehlers–Danlos syndrome
type IV, which manifests in human beings as fragile
skin and blood vessels with a frequent cause of
death being aortic rupture in adult life (reviewed in
ref. [132]). Previous work has shown that type III col-
lagen is colocalized with type I collagen in the colla-
gen fibril and that this may be essential for specific
kinds of fibrillogenesis. Different ratios of type III to
type I collagen are thought to modulate the size of
the type I fibre, and a difference of size has been
observed in various tissues or at different develop-
mental stages of the same tissue [133, 134]. To
assist in further study, a knockout mouse of the
Col3A1 gene was constructed. Most of the homozy-
gous Col3A1-/- died perinatally; however, 10% of the
mutant mice survived until adulthood but manifested
similar clincal symptoms as Ehlers–Danlos syn-
drome type IV patients including sudden death due
to rupture of large vessels, which resulted in much
earlier deaths than wildtype mice [135].

As one of the major constituents of basement
membranes, type IV collagen was suspected to play
a major role in basement membrane stability.

Different models of genetic knockouts now indicate
that, although important for stability and functionality,
type IV collagen is not essential for formation of
basement membrane assembly [136, 137]. Type IV
collagen null mice, generated by disruption of the
Col4a-/- locus, which removes �1(IV)2�2(IV) chains,
developed until embryonic day 9.5 (E9.5) with exam-
ination of basement membrane proteins showing
apparently normal deposition and assembly.
Structural deficiencies in basement membranes at
E10.5-E11.5, which were associated with vascular
bleeding in the heart and arteries at cell–cell con-
tacts and failure of Reichert’s membrane as the size
of the embryo increased suggested that these
defects were manifested as increasing mechanical
demands were required of the basement mem-
branes. This evidence suggests that type IV collagen
is involved in mechanical stability of membrane
structure [136]. Additional proof is provided in anoth-
er model of collagen dysregulation. Heat shock pro-
tein 47 (Hsp47) is a molecular chaperone that was
discovered to chaperone triple-helical procollagen
molecules in the endoplasmic reticulum. Genetic
mouse models ablating the Hsp47 gene resulted in
basement membrane disruption in homozygous
mice due to deficiencies in the production of mature
� chain of type I collagen, which effects fibril forma-
tion resulting in a type I collagen unable to form a
rigid, triple-helical structure. The mutation also per-
turbs the proper molecular form of type IV collagen
by a pathway still under investigation [137, 138]. Due
to the improper formation of type IV collagen in base-
ment membranes, Hsp47-/- mice displayed abnor-
mally oriented epithelial tissues and ruptured blood
vessels, which led to death ≤11.5 days after coitus,
which is in time frame of the lethality with the type IV
collagen mutant [137]. Seemingly, the Hsp47 -/- mice
have similar mechanically related basement mem-
brane phenotypes as the type IV collagen null mice.
Finally, in the ex vivo rat aortic model of angiogene-
sis using a type I collagen matrix, type IV collagen
promoted new vessel elongation and survival in a
dose-dependent manner compared with controls (no
type IV collagen), which grew until day 9 and then
regressed during the second and third week of cul-
ture (treatment with 3, 30, 300 �g/ml of type IV colla-
gen in 43, 57, 119% increase in microvascular length)
[139]. In all then, type IV collagen seems important for
stability of blood vessel formation.
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Laminin a4 is a key molecule in 

basement membrane assembly, microvessel

stability and maturation
Laminins are the other molecule in basement mem-
brane that can polymerize into a network (the other
being type IV collagen). Recall that they are com-
posed of three �, � and � chains encoded by individ-
ual genes, which assemble into a disulfide bonded,
cross-shaped structure (reviewed in ref. [45]). Tissue
distribution differences and interaction with cells are
usually mediated by the � chains, which exhibit func-
tional importance [131]. Two laminin � chains (�4
and �5), one � chain (�1) and one � chain (�1) have
been shown to be expressed in blood vessels, which
are found in two laminin molecules: laminin-8
(�4�1�1) and laminin-10 (�5�1�1) [21]. Using cell
adhesion assays with antibodies to different integrin
subunits and recombinantly generated laminin-8, HT-
1080 cells (human fibrosarcoma) and bovine capil-
lary endothelial cells were shown to use �6�1 and
�6�4 integrins to mediate binding to laminin-8 [140].
Later, using similar techniques, recombinant laminin-
10 promoted migration in vascular endothelial cells
better than recombinant laminin-8 with �3�1 integrin
being the major adhesion molecule for laminin-10
[141]. To examine the role of laminin �4 chains in
basement membranes, mice were generated harbor-
ing Lama4 null alleles. In late embryonic E11.5 and
particularly in newborns, the absence of laminin �4
weakened the capillary basement membranes with
ruptures in the microvascular walls resulting in subcu-
taneous hemorrhaging, especially in newborn, which
were subjected to greater mechanical stress during
birth [142]. Immunohistochemistry revealed a loss of
�1 and �1 laminin chains in the capillary basement
membranes as well as large reduction in type IV col-
lagen and nidogen while perlecan levels remained
unchanged, suggesting that laminin-8 may be
required for capillary basement membrane assembly
of nidogen and type IV collagen [142]. After birth,
there is a reduction in the vascular phenotype, which
has been suggested to correlate with the known
increase in production of laminin �5 chain (laminin-
10) from 3–4 weeks post-birth to adulthood, which
may partially rescue the phenotype [26]. The Lama4
null mice were also tested for their ability to form new
capillaries using the cornea angiogenesis assay.
Results from this assay led to greater than 50% of
the mice having to be sacrificed due to chronic hem-
orrhages; however, in the surviving animals, the new

vessels assumed a normal structure with time per-
haps as part of a laminin �5 rescue [142].

The laminin �5 chain (in laminin-10) was also
investigated in terms of constructing a null mouse.
The Lama5-/- mouse results in an embyronic lethal
phenotype with mice progressing normally until E9
with multiple defects occuring (exencephaly, syn-
dactyly, placentopathy) with no mice surviving after E
16.5 with death attributed to defects in the placenta
[143]. If laminin �5 is involved in vessel formation, it
is most likely not embryonic related as its expression
does not occur early enough in vessels (3–4 weeks
post-birth to adulthood [see laminin-10 above]) and
only mainly occurs in capillaries of endothelial cell
basement membranes [26, 131]. It may, however, be
associated with endothelial maturation. Future
answers should arrive soon as construction of null
mice that are targeted to laminin �5 and laminin �4
and �5 in endothelial basement membranes is cur-
rently in progress (reviewed in ref. [131]).

Fibronectin is essential for 

vascular development
As a major molecule in the ECM, which has been
demonstrated to be involved in cellular adhesion,
spreading and migration, the broad range of func-
tions associated with fibronectin including embryonic
development, immunological responses, fibrosis and
wound healing seem appropriate (reviewed in ref.
[144]). Because of the extensive purview of
fibronectin function in vitro and in vivo, null mice were
constructed to further ascertain the specific role of
this molecule. Constructed in three independent
mouse strains, the fibronectin gene resulted in a
homozygous embryonic lethal phenotype in all
strains and intercrosses between these strains [145].
A range of phenotypes were exhibited including
shortened anterior–posterior axes, deformed neuro
tubes, absence of notochord and somites, deformed
heart and embryonic vessels among others whose
common theme seemed to be derived from defects
in mesodermal development thought to be due to
deficits in cell proliferation, adhesion and migration
[145]. Developmental abnormalities from E8.0 until
death consisted of low numbers of primitive blood
cells in the embryonic vasculature and embryonic
vessels of large size and fewer in frequency than
controls not allowing further analysis of vascular for-
mation, which normally takes place around E8.5.
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Blood cells and vascular endothelial cells are derived
but blood vessels are not apparent suggesting that
fibronectin is involved in vasculogenesis [145, 146].
Further detailed examination of fibronectin null
embryos involving lineage analysis concluded that
fibronectin is essential for organization of heart and
blood vessels [144]. As discussed earlier, integrins
are specifically involved in activation of fibronectin
matrix assembly. One would then expect that the
integrin associated with fibronectin, in this case �5�1
integrin, would also be critical for function in similar
tissues as elucidated in the fibronectin null mouse.
Indeed, reduced blood vessel formation has been
seen in �5 integrin-negative embryoid bodies [147]
and similar mesodermal defects are present in �5-
integrin-deficient mice [148]. If fibronectin and �5�1
integrin receptor are involved in vasculogenesis and
angiogenesis, how might these processes be medi-
ated? Using surface plasmon resonance, co-
immunoprecipitation and solid-phase binding assays,
two binding domains on fibronectin were found to
modulate the activity of VEGF [149]. These novel
VEGF binding domains on fibronectin promote the
association between �5�1 integrin and VEGF recep-
tor 2 (Flk-1), which was confirmed by coprecipitation
studies requiring full length but not fragments of
fibronectin [149]. Association of the integrin with the
tyrosine kinase receptor allowed enhanced amplifi-
cation of mitogen activated protein kinase signalling
(MAPK) for endothelial cell migration [149]. Later
work by the same group has narrowed the binding
site for VEGF to the fibronectin C-terminal domain
within type III repeats 13–14 [150], which has previ-
ously been revealed to be the heparin II binding
domain [151–153]. This domain has been previously
demonstrated as a major syndecan binding site with
roles in focal adhesion and stress fibre formation
[154]. In a related study, VEGF binding sites are sug-
gested to become available when fibronectin is
prompted to adopt an extended confirmation by inter-
action with a hydrophilic surface or heparin/heparan
sulfate [155]. Long GAGs of greater than 22 saccha-
rides with sulfation on the 6-O and N positions of glu-
cosamine were required for full activity of the com-
plex. While the heparin/heparan sulfate interaction
serves to enhance protein–protein interactions of
VEGF and fibronectin, it also demonstrates a mech-
anism of how GAGs can attenuate matrix structure to
alter growth factor binding [155].

Perlecan and syndecans modulate 

growth factors in angiogenesis
Perlecan contains various modules, which allow it to
participate in a variety of cellular interactions as well
as being a major constituent of basement mem-
branes (reviewed in ref. [12]). To gather information
concerning the in vivo functions of perlecan, Hspg2-/-

mice were constructed. Suprisingly, however,
homozygous perlecan-null mice form normal base-
ment membranes [156]. Between E10 and E12,
nearly half the mice die, however, due to hemorrhage
of the pericardial cavity, which possibly results from
deterioration and failure of the basement membrane;
therefore, suggesting a role for perlecan in mechani-
cal stability of these membranes [156]. Surviving
Hspg2-/- mice have cephalic and cartilaginous abnor-
malities and die of respiratory failure after birth. Also,
perlecan null mice cartilage had severe disorganiza-
tion of columnar structures of chondrocytes, defec-
tive endochondral ossification, and disorganized col-
lagen fibrils and GAGs suggesting perlecan is impor-
tant for organizational structure of the matrix [157].
Due to the variety of phenotypes and the possible
number of interactions perlecan can have with other
molecules, a second perlecan mutant was made,
which removed only exon 3, Hspg2�3/�3, which
ablates two of the three possible heparan sulfate
attachment sites [158]. These null mice survived and
grew into apparently healthy adults. The Hspg2�3/�3

mice did display delayed wound healing, retarded
FGF2 induced tumour growth and impaired angio-
genesis in the cornea micropocket assay [158] pre-
sumably due to the reduction of heparan sulfate,
which has been shown to sequester, modulate the
release and attenuate FGF, VEGF and other growth
factors related to neovascularization. Another study
using these same Hspg2�3/�3 mice discovered that,
in vitro, isolated mutant smooth muscle cells showed
increased proliferation as compared with wildtype
cells and, in vivo, enhanced smooth muscle cell pro-
liferation culminating in intimal hyperplasia after
interruption of carotid artery flow [159] implying that
the heparan sulfate side chains of perlecan con-
tribute to FGF2 mediated growth control of smooth
muscle cells.

Syndecans can also modulate growth factor sig-
nalling via their heparan or chondroitin sulfate
chains. Of the four members of the syndecan family,
all have been identified in vascular cells and virtually
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all nucleated cells express one family member [61,
160]. Currently, syndecans are considered not to act
independently but participate as co-receptors work-
ing with FGF tyrosine kinases or with integrins as
with fibronectin (see section Fibronectin is essential
for vascular development), but clustering of synde-
can-4 molecules either with antibodies or using
chimeric systems has been shown to cause endocy-
tosis and activate Rac1, hinting that syndecans may
have their own cellular functions that work in concert
with other coreceptor partners [61, 64, 161]. Further
investigation of the in vivo aspect of syndecan func-
tion has resulted in mouse null mutants being pro-
duced in three of the four family members (synde-
can-1, -3 and -4) and a zebrafish model (syndecan-
2) using morpholinos for knockdown. All the mouse
models resulted in mice which appeared to have nor-
mal embryonic development and matured into appar-
ently normal adults. Syndecan-1 null mice showed
increased leukocyte adhesion in a retina perfusion
model versus wildtype mice, especially after tumour
necrosis factor � treatment [162]. Sdc1-/- mice also
had a higher degree of inflammation, which may
mediate corneal angiogenesis and also a delay in
wound healing presumably due to a defect in ker-
atinocytes [162]. Further analysis by production of a
transgenic syndecan-1 to produce overexpressed
syndecan-1 also demonstrated a delay in wound
healing with defects in granulation tissue formation
and angiogenesis [163]. The wound healing delay
and the angiogenesis defects in the overexpressed
systems were likely due to the ability of shed synde-
can-1 ectodomain to inhibit cell proliferation during
wounding repair and angiogenesis by binding growth
factors competitively, which allowed for fewer factors
to stimulate cells in the tissue [163]. Although there is
no mouse model for syndecan-2 mice as of yet, mor-
pholino knockdown technology was used in the
zebrafish model to explore the function of syndecan-
2 in vascular development. Syndecan-2 was shown
to be essential for sprouting angiogenesis in
zebrafish and, in later experiments, human synde-
can-2 and fragments of the cytosolic portion of syn-
decan-2 could rescue the zebrafish knockout pheno-
type [164]. Also, through gain and loss of function
genetic studies in zebrafish, VEGF and syndecan-2
were shown to genetically interact: VEGF mediated
ectopic signalling is compromised in syndecan-2

morphants and ectopic syndecan-2 potentiates
ectopic VEGF signalling [164]. Thus, syndecan-2 
is essential for angiogenic sprouting in zebrafish.
A similar phenotype was accomplished by using
siRNA to syndecan-2 in mouse glioma cells.
Downregulation of syndecan-2 expression resulted
in inhibited cell mobility and reduced formation of
capillary tubes in vivo in brain microvascular
endothelial cells [165]. Bacterial recombinant (i.e. no
GAG chains) syndecan-2 ectodomain activated
membrane protrusion, migration and capillary tube
formation in brain microvascular endothelial cells
[165]. Syndecan-2 seems necessary for angiogene-
sis and the shed syndecan-2 ectodomain may
increase angiogenic processes. Similar to syndecan-
2, syndecan-4 null mice have delayed wound repair
but in both heterozygous and homozygous geno-
types [166]. Significant differences in the level of vas-
cularization of the granulation tissue on day 6 after
wounding were apparent in homozygous and het-
erozygous syndecan-4 null mice indicating defects in
angiogenesis and/or wounding [166]. In another gen-
erated null model, sdc4-/- mice displayed a greater
area of diffuse and degenerated vessels in the pla-
cental labyrinth with more calcium and fibrin deposi-
tion indicating a reduced anti-coagulation [167].
Heparan sulfate chains are known to provide an acti-
vation mechanism for anti-thrombin, which results in
a procoagulant state (reviewed in ref. [168]). The
absence of these heparan chains in syndecan-4 null
mice may be responsible for their anti-coagulant phe-
notype. The last syndecan family member for which
there is a null mouse is syndecan-3, but abnormalities
in that model currently appear to be related to skele-
togenesis and to neural phenotypes (reviewed in ref. [61]).

Fragments of ECM proteins 
regulate angiogenic processes

Several of the ECM proteins that have been dis-
cussed have arisen through an evolutionary selective
process known as exon shuffling. Proteins assem-
bled in this way are composed of modules or
domains, which impart specific functions to the par-
ent protein. It is logical then that fragments of these
parent ECM proteins, whether by natural or synthet-
ic fragmentation, might have the potential to function
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independently. Fragments of ECM proteins, which
have been suggested to modulate angiogenesis, are
in Table 2. Almost all of the fragments are involved in
inhibition instead of activation of angiogenesis. Most
of these fragments have been isolated or created for
the purpose of inhibiting tumour angiogenesis.
Others are produced naturally, in vivo, which suggests
that they may have endogenous functions in angio-
geneic pathways and/or other physiological purposes.

The first protein on the list, endostatin, is probably
the most famous of these fragments. Endostatin is a
proteolytic fragment of C-terminal, non-collagenous
(NC1) domain of type XVIII collagen (reviewed in ref.
[169]). It was isolated as a proteolytic fragment from
a hemangioendothelioma, cloned and shown to
regress primary tumours in mice [170]. Null mice
generated by inactivation of the collagen XVIII gene,
Col18a1, appeared to have no major defect in vascu-
lar patterning or capillary density in most organs, and
the experiments involving tumour growth showed no
significant difference with wildtype animals [171,
172]. Further examination, however, using a modified
aortic explant assay, revealed a two-fold increase in
microvessel growth in knockout versus wildtype ani-
mals, which could be eliminated by administration of
low levels (0.1 �g/mL) of endostatin [173]. Analysis
of endothelial cells from type XVIII collagen wildtype
and null mice found that Col18a1-/- cells are more
adhesive to fibronectin [173]. This increased adhe-
sion in the null mice, considered in light of the two-
fold microvessel outgrowth of the knockout in the
modified aortic explant assay, indicates a possible
stabilization in newly formed vessels allowing for
reduced regression and an increase in microvessel
outgrowth [173]. Endostatin added exogenously was
able to reduce the increased adhesion of type XVIII
collagen null cells to wildtype levels [173]. Due to
striking differences in the increased adherence of
fibronectin in knockout cells, an RGD peptide was
used to examine the role of �5�1 integrin, which is a
known binding partner of fibronectin. Both wildtype
and knockout endothelial cells were proportionally
inhibited in the binding assay, suggesting �5�1 inte-
grin is probably not a cause of the fibronectin binding
difference in the mouse model [173]. Another possi-
ble binding partner is heparan sulfate proteoglycans
(see Fibronectin is essential for vascular develop-
ment). In another study, endostatin has been demon-
strated to regulate endothelial cell adhesion and

cytoskeletal organization similar to that of FGF2
[174] and, in a later report, showed the inhibition of
FGF2 and VEGFA mediated angiogenesis in the
chick chorioallantoic membrane assay with endo-
statin where inactivation of heparin binding domains
by mutagenesis negated the effects of growth factor
inhibition, implying that endostatin attenuates its anti-
angiogenic effects via heparin/heparan sulfate [175].
Heparin or related GAGs could also mediate the
adherence of endothelial cells from type XVIII colla-
gen null mice.

Other NC domains of � chains of type IV collagen
can also generate anti-angiogenic fragments (Table
2) (reviewed in ref. [176]). Arresten, derived from
(�1(IV)NC1), has been shown to inhibit endothelial
cell proliferation and tumour growth [103, 177].
Mechanistically, arresten also mediates its effects via
�1�1 integrin, which inhibits migration, proliferation
and tube formation in endothelial cells [178].
Similarly, tumstatin, canstatin and an unnamed type
IV (�6) chain have been shown to be inhibitors of
angiogenesis [176]. Another recent report links the
p53 tumour suppressor pathway to production of col-
lagen XVIII and collagen IV anti-angiogenic frag-
ments, endostatin and tumstatin (reviewed in ref.
[179]) [180]. The enzyme, �(II) collagen prolyl-4-
hydroxylase (�2PH), is responsible for the hydroxyla-
tion of proline, which is critical for triple-helical strand
formation in collagen biosynthesis and is a rate-limit-
ing step in the pathway [181]. p53 transcriptionally
activates �2PH gene, which results in the extracellu-
lar release of collagen fragments, endostatin and
tumstatin [180]. In the case of mutant p53, �2PH is
not activated and there is a reduction in the level of
secreted anti-angiogenic fragments. In vivo testing
consisted of �2PH expressing H1299 cells grafted in
to the flanks of nude mice where ectopic expression
resulted in almost complete suppression of tumour
growth as compared to two control lines, which
developed larger tumours within one month [180].
Also, in xenografted tumours from HCT116 cells,
tumour cells from p53-/- cells had reduced tumstatin
staining and increased vascularization versus
tumours derived from wildtype HCT116 cell [180],
suggesting that the production of collagen derived
anti-angiogenic fragments may be in concert with a
p53-dependent mechanism of anti-angiogenesis.

Fragments derived from fibronectin, perlecan and
elastin have also been shown to modulate tumour
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angiogenesis. Anastellin, which is a fragment of the
III1c repeat of fibronectin, has been shown to sup-
press tumour growth and metastasis in mouse and
human models of cancer [182, 183]. Endorepellin,
from the C-terminal, domain V fragment of perlecan,
has also shown to inhibit angiogenesis and block
migration of endothelial cells [184], which ultimately
leads to actin disassembly (reviewed in ref. [12])
[185]. �-elastins are peptides generated by partial
hydrolysis of ligamentum nuchae elastin in 1M KOH
in 80% aqueous ethanol [186]. The sequence,
VGVAPG–found in �-elastins, has been found to be

one of the angiogeneic motifs that are repeated mul-
tiple times in tropoelastin [187]. These peptides were
then employed in various angiogenesis assays
where they enhanced angiogenesis in the chick
chorioallantoic membrane assay, enhanced capillary
tube formation of human microvascular endothelial
cells and human umbilical vein endothelial cells on
type I collagen gel, and increased pro-MMP2 and
pro-MT-MMP in human microvascular endothelial
cells, leading to the conclusion that elastin peptides
can promote endothelial cell migration and tubuloge-
nesis through upregulation of MT1-MMP [108, 188].

Fragment ECM parent Size (kD) Properties [Reference]

Endostatin Type XVIII collagen 20 -Identification and cloning of endostatin as an angiogenesis inhibitor [170]
-Angiogenic effect mediated by heparin binding domains [175] 
-p53 activates a transcriptional program increasing endostatin 
production [180] 
-Disassembly of actin cytoskeleton via RhoA inhibition [242]

Restin Type XV collagen 22 -Inhibits angiogenesis, tumour growth supression [243–245]

Arresten
Type IV (�1) collagen

26 -Inhibit endothelial cell proliferation and tumour growth [103, 177] 
-Anti-angiogenic activity mediated by alb1 integrin [178]

Canstatin
Type IV (�2) collagen

24 -Inhibits angiogenesis, tumour growth suppression [246]

Tumstatin
Type IV (�3) collagen

30 -Induces apoptosis of proliferating endothelial cells [247] 
-Inhibits angiogenesis, suppresses tumour growth [248–251] 
-p53 activates a transcriptional program increasing tumstatin production [180]

Unnamed
Type IV (�6) collagen

~25 -Inhibits angiogenesis, tumour growth suppression [177]

Anastellin Fibronectin 9 -Inhibits tumour growth, angiogenesis and metastasis [182, 183] 
-Inhibits ERK signalling, G1 arrest in endothelial cells 

Endorepellin Perlecan 81 -Inhibits angiogenesis, can bind endostatin [184] 
-Disassembly of actin cytoskeleton and focal adhesions via �2�1 inte-
grin [185]

�-elastin Elastin unknown -Proangiogenic in chick chorioallantoic membrane model [188] 
-Stimulate tube formation in endothelial cells in Matrigel and collagen [188] 
-Promote endothelial cell migration in in vitro wound healing assay [188]
-Upregulate pro-MT1-MMP and pro-MMP2 expression (gene) and 
activation (protein) [188]

Table 2 Fragments of extracellular matrix molecules involved in angiogenesis
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Proteins involved in 
signalling through ECM molecules

Endogenous ECM components and their fragments
can regulate blood vessel formation. Other molecules,
also have been found which can modulate, inhibit or
coordinate the signalling functions of ECM residents.
Among the many that have been reported, exploration
of two prominent families is presented.

Thrombospondins 
Composed of five modular, secreted glycoproteins
with no known orthologs in flies or worms, the mech-
anism of the thrombospondin (TSP) family are not
well understood [189]. The TSP family can be divid-
ed into two groups: TSP1 and TSP2 form one sub-
group of the larger chain mass at ~145 kD and TSP3,
TSP4 and TSP5 form a second subgroup with chain
mass of ~100 kD [189]. TSP1 and TSP2 have
demonstrated ability to inhibit angiogenesis, reduce
endothelial cell migration and mediate endothelial
cell survival (reviewed in ref. [190]) and will be the
focus of discussion. Eight receptors have been iden-
tified for TSP1 and, of these, five (CD36 [191, 192],
CD47 [193], heparan sulfate proteoglycans [194],
�3�1 integrin [195], and �4�1 integrin [196]) are
thought to be involved in angiogenesis. In addition,
TSP1 has also been shown to participate in platelet
aggregation [197]. TSP1 and TSP2 have been
detected in endothelial cells, fibroblasts and platelets
under varying conditions, which have made the tis-
sue source of the participating TSP in angiogenesis
difficult to identify (reviewed in ref. [198]). The gener-
ation of TSP1 null mice revealed viable mice that had
increased inflammatory cell infiltrates and epithelial
cell hyperplasia in the lungs resulting in pneumonia
and none of the other abnormalities that might be
expected from TSP1 in vitro data suggesting other
TSPs or proteins compensate for the lack of TSP1
[199]. Further work with muscle tissue explant culture
from TSP1 null mice demonstrated enhanced neo-
vascularization associated with endotheolial cell out-
growth but perivascular smooth muscle cells dis-
played decreased outgrowth [200]. In the same
study, examination of the mRNA extracted from out-
growths revealed that endogenous TSP1 increased
levels of type IV collagen (�l) and decreased levels of

type I collagens (�1, �2 ) and type III collagen (�1)
suggesting that TSP1 regulates a set of molecules,
which control the activation of angiogenesis [200].

To the untrained eye, TSP2 null mice look normal
and reproduced in the appropriate frequency. With
closer examination, however, numerous subtle
defects were apparent (i.e. greater elasticity in skin,
ability to fashion knots in the tail) in null mice, which
were determined to be improper organization of col-
lagen fibrils [201]. Also, an abnormal bleeding time
led to discovery that TSP2 null mice had greater vas-
cular density than wildtype, which correlated with
previous in vitro data suggesting that TSP2 was an
inhibitor of angiogenesis [201]. Recently, a TSP1-
TSP2 double knockout (TSP-DKO) was generated,
which has provided some insight into the role of TSP
in angiogenesis [202]. Immunostaining with TSP1 in
wildtype versus double knockout mice of bone mar-
row revealed that megakaryocytes rather than other
cell types express TSPs [202]. In addition, megakary-
ocytes from wildtype animals stimulated angiogene-
sis in a Matrigel plug assay but cells from TSP-DKO
showed 1.8-fold greater stimulation over a 21 day
period, suggesting TSPs in wildtype animals are con-
trolling the level of angiogenesis [202]. Bone marrow
myelosuppression studies were also used to demon-
strate that TSP-DKO mice, which had enhanced
recovery in hind limb ischemia model, could donate
bone marrow via irradiation and then transplantation
to wildtype mice resulting in the transfer of the
enhanced neoangiogenesis seen in the knockout
mice had been conferred to the wildtype mice [202].
Experimental results suggested that TSP1 and TSP2
control platelet numbers in the blood by regulating
the amount of megakaryocyte production in the mar-
row through regulating vascular density. Thus, throm-
bopoietic cells can modulate angiogenesis by releas-
ing inhibitory TSPs [198, 202].

CCN proteins 
The CCN family of secreted proteins were individual-
ly discovered and characterized but were later
grouped into a protein family based on the high
degree of similarity in their predicted secondary
structure [203, 204]. These six proteins, the family
name of which is derived from the first initials of the
first three members (Cysteine-rich protein 61-cyr61,
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CCN1; Connective tissue growth factor—CTGF,
CCN2; Nephroblastoma overexpressed protein—
Nov, CCN3; the other members are, respectively,
Wnt-inducible secreted protein-1, -2, -3—WISP-1, -2,
-3, CCN4, CCN5, CCN6) contain four distinct mod-
ules, which have been demonstrated to react with a
wide variety of ECM molecules. From N-terminus to
C-terminus, the four modules are an insulin-like
growth factor binding protein (IGFBP-module I), a
Von Willebrand factor domain (VWC- module II), a
thrombospondin-homology domain (TSP1-module
III) and a cysteine knot, heparin binding carboxy ter-
minal domain (CT-module IV). Being individually
coded on single exons, these modules most likely
evolved through exon shuffling [203] and binding
studies have shown that most of the individual
domains can function in the absence of the others
(reviewed in ref. [205]). Experiments analyzing this
protein family have yielded data relating to many cel-
lular physiological processes including migration,
proliferation, adhesion, differentiation, apoptosis
(and/or anoikis) and chondrogenesis. There are sev-
eral recent reviews [205–209] and a book [204] dis-
cussing the CCN family. Specific to this review,
experimental data demonstrating the involvement of
CCN family members in vasculogenic and angio-
geneic processes will be discussed below.

Being associated with the cell through numerous
binding partners allows CCN1 (Cyr61, Cysteine rich
protein 61) to be involved in many different biological
functions, although its role in neovascularization
seems to be the most studied. CCN1 binding is cur-
rently known to be associated with five integrins
(�v�3, �v�5, a6�1, �IIIb�3, �M�2) and heparan sul-
fate proteoglycans [210]. From a gene expression
perspective, CCN1 can regulate expression of genes
involved in angiogenesis and the ECM (i.e. type I col-
lagen, MMP1, MMP3, TIMPs, VEGF-A and VEGF-C)
[211]. Interest in CCN1 as a mediator of angiogene-
sis was demonstrated [212] in the rat corneal pocket
angiogenesis assay where CCN1 promoted corneal
neovascularization as did FGF2 but not vehicle or
pre-incubated CCN1 with anti-CCN1 antibodies.
Later, in the rabbit hind limb ischemia model, aden-
oviral mediated human CCN1 gene transfer was
shown to be a potent stimulus of revascularization of
the limb even exceeding that of the positive control of
adenoviral mediated VEGF165 [213]. In studies of
wound healing, CCN1 shows high induction in der-
mal fibroblasts in granulation tissues during cuta-

neous wound repair and, consequently, is presumed
to activate a genetic program of wound repair in skin
fibroblasts [211, 214]. CCN1 has also been associat-
ed in regulation of expression of other tissues
response to injury such as bone fracture repair and
liver regeneration [214, 215]. In the context of
embryogenesis, CCN1 has been visualized at sites
of mesenchymal condensation and neovasculariza-
tion as well as being involved in promoting uterine
vessel growth [216]. Construction of a CCN1 null
mouse corroborated the results of the above experi-
mental observations in that 30% of null mice suffered
failure of chorioallantoic membrane fusion while the
remainder died due to placental vascular defects and
compromised vascular development [217]. Further
investigation revealed that CCN1 deficiency resulted
in a problem associated with vessel bifurcation (non-
sprouting angiogenesis) at the chorioallantoic junc-
tion, which causes reduced vascularization of the
placenta. Correlation of this phenotype with that of
null mutants of VEGF receptor 3 [218], which is defi-
cient in one of the VEGF-C receptors and results in a
dysregulated Vegf-C expression phenotype in the
allantoic mesoderm, suggests that CCN1 regulated
expression of Vegf-C is involved in vessel bifurcation
[217]. Also, in �v integrin null mice, 80% of the mice
die due to undervascularization of the placenta. In
the placental labyrinth zone, the �v integrin null mice
appear morphologically similar to CCN1-null mice
with foetal vessels at the chorionic plate appearing
collapsed or absent [219]. Since embryonic vessels
and the primary vascular plexus of the yolk sac suc-
cessfully form, CCN1 appears not to be required for
vasculogenesis [217].

In vitro experiments at the cellular and molecular
level involving CCN1 have revealed differing effects
on many cell types, which are believed to be receptor
specific. Most of these differences have been attrib-
uted to binding of different integrins associated with
multiple cell types. In fibroblasts and smooth muscle
cells, for example, CCN1 induces cell adhesion by
binding to a6�1 integrin and heparan sulfate proteo-
glycans as coreceptors [220] while its promotion of
angiogenesis in endothelial cells has been shown to
be through binding the �v�3 integrin [221]. Also inter-
esting is the data that activated endothelial cell adhe-
sion to matrix CCN1 via �v�3 integrin protects cells
by suppressing apoptosis while fibroblast adhesion to
matrix CCN1 via �6�1 integrin and a specific heparan
sulfate proteoglycan, syndecan-4 (antibodies to syn-



decan-4 inhibited the effect and syndecan-4 was
found in focal adhesions with CCN1), induces apop-
tosis by a non-transcription dependent p53 mecha-
nism leading to caspase-9 and caspase-3 activation
[222]. Thus, certain matrix proteins in combination
with syndecan-4 and/or heparan sulfate proteogly-
cans can suppress or induce apoptosis by adhesion
in a cell-type dependent manner and, therefore, at the
tissue level, may play key roles in de novo or neovas-
cular vessel formation [205, 206, 222].

Not surprisingly, due to their related structure,
CCN2 (CTGF, connective tissue growth factor) has
similar properties of CCN1. Both proteins play key
regulatory roles in survival and function of endothe-
lial cells and in angiogenesis [208] by promoting
endothelial cell growth, adhesion and migration [212,
223–225]. As for their roles in embryonic angiogene-
sis, CCN2 null mice are also embryonic lethal but not
due to placental vascular defects or vessel integrity
but because of defects in endochondral ossification
resulting in skeletal defects from dysregulation of
bone growth [226] of which one result is the inability
to breathe at birth due to abnormal rib formation.
Closer examination of these mice, however, also
reveals that CCN2 null mice have expansion of the
hypertrophic zones in growth plates, which has been
previously demonstrated to result from an impair-
ment of angiogenesis [226–228]. Immunostaining for
PECAM confirmed that in neonatal CCN2 wildtypes,
a fine network of capillaries was present in well-
developed ossification zones while in CCN2 null mice
capillary formation was much less extensive [226].
These defects were ultimately suggested to be due
to decreased expression of VEGF in the hypertrophic
zones of CCN2-null mice. Reduced CCN2 results in
inefficient infiltration of osteoclasts/chondroclasts,
which express MMP-9. By these cells not being pres-
ent, the level of MMP-9 was reduced and MMP-9 is
required for growth plate angiogenesis [229]. MMP
mediated degradation of the matrix activates VEGF,
which is chemotactic for osteoclasts [226, 227]. In
other work with CCN2 related to VEGF regulation, a
yeast two-hybrid binding study screening potential
binding inhibitors to VEGF165 from a human chon-
drocyte cDNA library resulted in CCN2 as a candi-
date inhibitor molecule [230]. CCN2 was determined
to bind to VEGF165 through the thrombospondin-1
domain of CCN2 and the exon-7 coding region of
VEGF165. Further studies demonstrated that (1)
CCN2 could inhibit the binding of VEGF165 to

human umbilical vein endothelial cells and to recom-
binant VEGF Receptor 2 but not VEGF Receptor 1;
(2) in vitro, CCN2 can inhibit VEGF165 induced tube
formation of bovine aortic endothelial cells by <45%
versus VEGF165 alone and the effect was reversed
by addition of anti-CCN2 antibody; (3) in vivo, CCN2
inhibited VEGF165 stimulation of vessel formation in
the Matrigel injection model in mice [230]. Although
these results of CCN2 being pro- and anti-angio-
geneic may seem contradictory, the context and
quantity of the molecule may be important for which
effect CCN2 mediates [205]. Finally, in an investiga-
tion examining the physiological relevance of CCN2
mediated cell adhesion, CCN2 null fibroblasts were
discovered to have reduced extracellular signal-regu-
lated kinase (ERK) and focal adhesion kinase (FAK)
phosphorylation, reduced �-smooth muscle actin
stress fibre formation and impaired spreading on
fibronectin [231]. Given that CCN2 binds fibronectin
and �4 integrins, �1 integrins, �5 integrins and synde-
can-4 and is involved in tissue development and
wound healing (reviewed in ref. [206]), these results
suggest that the physiological role of CCN2 may be in
regulation of fibroblast adhesion [231].

CCN3 (Nov, nephroblastoma overexpressed), the
third member of the CNN family, was originally dis-
covered as an upregulated gene in avian nephrob-
lastomas induced by myeloblastosis associated virus
(MAV) (reviewed in ref. [232]) [233]. Thus, early
analyses of CCN3 were focused in cancer [232].
Later, with the identification of the CCN protein fami-
ly, CCN3 was characterized as CCN1 and CCN2 and
was shown to be involved in cell migration, adhesion
and survival in endothelial cells [234]. CCN3 is also
involved in the angiogenic process as it induced neo-
vascularization in the rat cornea model [234] as well
as being highly expressed in granulation tissue of
cutaneous wounds five to seven days after injury
[235], and rat aortic vascular smooth muscle cells
express CCN3, in vivo and in vitro with high expres-
sion in the aorta, and start with low expression at day
7 but increase to high expression in the intima at day
14 in the rat carotid artery balloon injury model impli-
cating CCN3 in vascular injury [236]. There are some
distinct differences between CCN3 and the other
CCNs. CCN3 from yeast has been shown to interact
with Notch1 and influence Notch signalling through
the Notch C-terminus [237] and Notch as been impli-
cated in vessel development. Unlike CCN1& CCN2,
CCN3 does not seem to mediate its wound healing
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effects via VEGF-A, but via another mechanism [235].
Further delineation of the role of CCN3 will most like-
ly be provided by production of a CCN3 null mouse.

The remaining family members CCN4, CCN5 and
CCN6 (Wnt inducible secreted proteins-1,-2 ,-3,
Wisp -1,-2 ,-3) have had less examination due to a
lack of readily available reagents (i.e. recombinant
material and antibodies) [206]. CCN5 (also known as
COP-1), which is the only CCN family member that
lacks the CT module, was found to inhibit prolifera-
tion of vascular smooth muscle cells [238]. Human
mutations in CCN6 have been reported to be associ-
ated with progressive pseudorheumatoid dysplasia
[239], an autosomal recessive skeletal disorder
where patients experience cartilage loss and
destructive bone changes as they age. By modula-
tion of the various molecules of the ECM, some
members of the CCN family of proteins appear to
play significant roles in neovascularization. Further
work involving a CCN1-CCN2 double null mouse is
already underway [205].

ECM signalling in vessel formation:
what next?

By providing a signalling as well as a structural net-
work, the ECM is a major player in blood vessel for-
mation. Evolution, through gene (or genome) dupli-
cation and exon shuffling, has a rich environment of
protein modules from which to select new ECM pro-
teins. Aside from the new proteins waiting to be dis-
covered, the current ones are still waiting to relin-
quish more secrets. Several themes have emerged.
Integrins, certainly the king of ECM receptor func-
tion, do not mediate all the communication from the
ECM to the cell. GAGs seem to be involved in trans-
mitting some of the ECM signalling (i.e. VEGF and
endostatin signalling via fibronectin) and with their
diversity of structure may be more involved in ECM
signalling as co-receptors or bona fide receptors in
the future. Also, as the proteome is smaller than
expected, more molecular functions may be related
to either post-translational modification (i.e. glycosy-
lation, glycanation, hydroxylation) or in fragmentation of
larger molecules to be used to employ new functions.

From a therapeutic prospective, one of the goals
of angiogenic study should be to harness these ECM
molecules to either target the growth of new vessels

or use nature’s paradigms to create artifical ones.
Progress is being made in these areas. Tissue engi-
neered blood vessels (TEBVs) have been construct-
ed from a patient’s own cells which serve as arterial
bypass grafts in long term animal models [240]. Also,
biodegradable polymers such as the biodegradable
elastomer, which mimic the natural network of colla-
gen and elastin have potential for uses in tissue engi-
neering and drug delivery [241]. As more knowledge
is accumulated concerning how the ECM functions in
neovascularization, more amazing technical and
medical breakthroughs should be possible.
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