21 research outputs found
Polygenic resilience scores capture protective genetic effects for Alzheimerâs disease
Polygenic risk scores (PRSs) can boost risk prediction in late-onset Alzheimerâs disease (LOAD) beyond apolipoprotein E (APOE) but have not been leveraged to identify genetic resilience factors. Here, we sought to identify resilience-conferring common genetic variants in (1) unaffected individuals having high PRSs for LOAD, and (2) unaffected APOE-Δ4 carriers also having high PRSs for LOAD. We used genome-wide association study (GWAS) to contrast âresilientâ unaffected individuals at the highest genetic risk for LOAD with LOAD cases at comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate the addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. Replication of resilience scores was undertaken in eight independent studies. We successfully replicated two polygenic resilience scores that reduce genetic risk penetrance for LOAD. We also showed that polygenic resilience scores positively correlate with polygenic risk scores in unaffected individuals, perhaps aiding in staving off disease. Our findings align with the hypothesis that a combination of risk-independent common variants mediates resilience to LOAD by moderating genetic disease risk
Recommended from our members
Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain
Background:
Protein tyrosine kinases are important regulators of cellular homeostasis with tightly
controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory
constraints on kinase activity, can promote malignant transformation, and appear to be a major
determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase
domain, for example, have recently been identified in patients who showed clinical responses
to EGFR kinase inhibitor therapy.
Methods and Findings:
Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR)
kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR
coding sequence in glioma tumor samples and cell lines. We identified novel missense
mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/
8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene
dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells.
Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR
kinase inhibitors.
Conclusions:
Our results suggest extracellular missense mutations as a novel mechanism for oncogenic
EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for
treatment of glioblastoma
Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain
BACKGROUND: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. METHODS AND FINDINGS: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. CONCLUSIONS: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Recommended from our members
Differentiation of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using qEEG/ERP-Based Cognitive Testing and Volumetric MRI in an Outpatient Specialty Memory Clinic.
BACKGROUND: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia in a scalable, accessible way is important to promote earlier detection and intervention.
OBJECTIVE: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-related potential (qEEG/ERP)-based cognitive testing system (eVoxÂź by Evoke Neuroscience) combined with an automated volumetric magnetic resonance imaging (vMRI) tool (NeuroreaderÂź by Brainreader).
METHODS: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia specialists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP (nâ=â161) and quantitative vMRI (nâ=â111) data were obtained. A multinomial logistic regression model was used to determine significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models.
RESULTS: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors (AUCâ=â0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal lobe volume, were added to the model (AUCâ=â0.87).
CONCLUSION: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD, MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase the diagnostic certainty of SCD, MCI, and dementia
Recommended from our members
Handgrip Strength Is Related to Hippocampal and Lobar Brain Volumes in a Cohort of Cognitively Impaired Older Adults with Confirmed Amyloid Burden.
BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI).
OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry.
METHODS: We selected 38 participants with Alzheimer\u27s disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance.
RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (pâ=â0.02). Dominant handgrip strength was related to higher frontal lobe volumes (pâ=â0.02). Higher 2MWT scores were associated with larger hippocampal (pâ=â0.04), frontal (pâ=â0.01), temporal (pâ=â0.03), parietal (pâ=â0.009), and occipital lobe (pâ=â0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes.
CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints
Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6(th) nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (ÎŒCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD
Polygenic resilience scores capture protective genetic effects for Alzheimerâs disease
Polygenic risk scores (PRSs) can boost risk prediction in late-onset Alzheimerâs disease (LOAD) beyond apolipoprotein E (APOE) but have not been leveraged to identify genetic resilience factors. Here, we sought to identify resilience-conferring common genetic variants in (1) unaffected individuals having high PRSs for LOAD, and (2) unaffected APOE-Δ4 carriers also having high PRSs for LOAD. We used genome-wide association study (GWAS) to contrast âresilientâ unaffected individuals at the highest genetic risk for LOAD with LOAD cases at comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate the addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. Replication of resilience scores was undertaken in eight independent studies. We successfully replicated two polygenic resilience scores that reduce genetic risk penetrance for LOAD. We also showed that polygenic resilience scores positively correlate with polygenic risk scores in unaffected individuals, perhaps aiding in staving off disease. Our findings align with the hypothesis that a combination of risk-independent common variants mediates resilience to LOAD by moderating genetic disease risk