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Background

Protein tyrosine kinases are important regulators of cellular homeostasis with tightly
controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory
constraints on kinase activity, can promote malignant transformation, and appear to be a major
determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase
domain, for example, have recently been identified in patients who showed clinical responses
to EGFR kinase inhibitor therapy.

Methods and Findings

Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR)
kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR
coding sequence in glioma tumor samples and cell lines. We identified novel missense
mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/
8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene
dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells.
Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR
kinase inhibitors.

Conclusions

Our results suggest extracellular missense mutations as a novel mechanism for oncogenic
EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for
treatment of glioblastoma.

The Editors’” Summary of this article follows the references.
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Introduction

The epidermal growth factor receptor (EGFR) is a receptor
tyrosine kinase that regulates fundamental processes of cell
growth and differentiation. Deletion of the EGFR gene is
embryonically lethal in mice, and increased EGFR signaling
has been linked to a variety of human malignancies.
Mechanisms for oncogenic conversion of EGFR in cancer
include EGFR gene amplification, structural rearrangements
of the receptor, overexpression of epidermal growth factor
(EGF)-family ligands by tumor cells and/or surrounding
stroma, and—as was recently shown in lung cancer—activat-
ing mutations in the EGFR kinase domain [1].

The evidence for a role of EGFR in oncogenesis is
particularly compelling in glioblastoma, the most aggressive
human brain tumor with a two year survival of less than 5%
despite surgery, radiation, and chemotherapy [2,3]. About
40% of glioblastomas show amplification of the EGFR gene
locus [4], and about half of these tumors express a mutant
receptor (EGFRVIII) that is constitutively active due to an in-
frame truncation within the extracellular ligand-binding
domain [5-7]. Perhaps the strongest evidence for a role of
EGFR in the biology of glioblastoma stems from clinical trials
in which 15%-20% of glioblastoma patients experienced
significant tumor regression in response to small-molecule
EGFR kinase inhibitors [8,9]. Our recent data indicate that
expression of EGFRVIII in the context of an intact PTEN
(phosphatase and tensin homolog) pathway is associated with
these clinical responses [9].

To explore the possibility that EGFR might be the target of
oncogenic mutations outside the kinase domain, we se-
quenced the entire EGFR coding region in a panel of 151
glioma tumors and cell lines.

Methods
DNA Samples

Genomic DNA was extracted from eight glioblastoma cell
lines (A172, SF268, SF295, SF539, T98G, U87, Ull8, and
U251) and 143 fresh frozen glioma samples. The clinical
glioma samples comprised glioblastomas (n = 132), World
Health Organization grade III anaplastic astrocytomas (n = 3),
grade III mixed gliomas (n = 4), and grade III oligodendro-
gliomas (n = 4). Germline genomic DNA was extracted from
peripheral blood samples. To confirm the match between
germline and tumor DNA for each patient, we performed
mass spectrometric genotyping of 24 single-nucleotide poly-
morphism (SNP) loci. These loci included 23 SNP loci
represented on both 50K Xba and Hind arrays (Affymetrix,
http:/lwww.affymetrix.com) and one AmelXY locus for sex
determination (Table S1). Collection and analysis of all
clinical samples was approved by the University of California
Los Angeles Institutional Review Board.

Reagents

Erlotinib was purchased from WuXi Pharmatech (http:/
www.pharmatechs.com). The following antibodies were used
in this study: anti-EGFR, anti-phospho-Y1068-EGFR anti-
phospho-Y845-EGFR, and anti-phosphoinositide 3-kinase
(PI3K) p85 (all from Cell Signaling Technology, http://
www.cellsignal.com); anti-phosphotyrosine 4G10 (Upstate
Biotechnologies, now Millipore, http:/[www.upstate.com);
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and anti-actin, anti-ERK1/2, and anti-P-ERK1/2 (all from
Santa Cruz Biotechnology, http:/lwww.scbt.com).

Sequencing and Mass Spectrometric Genotyping

PCR reactions for each exon and flanking intronic
sequences contained 5 ng of genomic DNA, 1X HotStar
Buffer, 0.8 mM dNTPs, 1 mM MgCl,, 0.2 U HotStar Enzyme
(Qiagen, http://lwww.qiagen.com), and 0.2 pM forward and
reverse primers in a 6 or 10 pl reaction volume. PCR cycling
parameters were: one cycle of 95 °C for 15 min; 35 cycles of 95
°C for 20 s, 60 °C for 30 s, and 72 °C for 1 min; followed by one
cycle of 72 °C for 3 min.

The resulting PCR products were sequenced using bidirec-
tional dye-terminator fluorescent sequencing with universal
M13 primers. Sequencing fragments were detected via
capillary electrophoresis using ABI Prism 3730 DNA Analyzer
(Applied Biosystems, http://www.appliedbiosystems.com). PCR
and sequencing were performed at Agencourt Bioscience
Corporation (http:/[www.agencourt.com) or at the Broad
Institute of Harvard and MIT (http:/lwww.broad.mit.edu).
Forward (F) and reverse (R) chromatograms were analyzed in
batch with Mutation Surveyor 2.51 (SoftGenetics, http://
www.softgenetics.com), followed by manual review.

A minimum of 21 of 28 (75%) EGFR exon sequence
coverage was accomplished for 151 samples. An exon for each
individual sample was considered covered if 90% of the
sequence trace within the exon had a phred quality score of
30 or greater, a signal-to-background noise ration of 15% or
less, and signal intensity greater than 25% of the signal
intensity of the sequencing plate. High-quality sequence
variations found in one or both directions were scored as
candidate mutations. Exons harboring candidate mutations
were reamplified from the original DNA sample and
resequenced.

For mass spectrometric genotyping, PCR and extension
primers (Table S2) were designed using SpectroDESIGNER
software (Sequenom, http:/lwww.sequenom.com). Unincorpo-
rated nucleotides from PCR reactions were dephosphorylated
with shrimp alkaline phosphatase (Amersham, http:/fwww.
amersham.com) followed by primer extension with Thermo-
Sequence polymerase (Amersham). Primer extension reac-
tions were loaded onto SpectroCHIPs (Sequenom) and
analyzed using a MALDI-TOF (matrix-assisted laser desorp-
tionf/ionization time-of-flight) mass spectrometer (SpectroR-
EADER, Sequenom) [10]. Mass spectra were processed with
SpectroTYPER (Sequenom) to determine genotypes based on
peaks intensities corresponding to the expected extension
products.

Affymetrix 100K SNP Arrays

Genomic DNA was processed and hybridized following the
guidelines of the manufacturer (Affymetrix) and arrays were
scanned with a GeneChip Scanner 3000. Genotyping calls and
signal quantification were obtained using GeneChip Operat-
ing System 1.1.1 and Affymetrix Genotyping Tools 2.0
software. Data were normalized at the probe level to a
baseline array with median signal intensity using invariant set
normalization. After normalization, the signal values for each
SNP in each array were obtained with a model-based (perfect-
match/mismatch) method [11]. Signal intensities at each
probe locus were compared with a set of normal reference
samples representing 36 ethnically matched individuals to
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Figure 1. EGFR Missense Mutations in Glioblastoma Cluster in the Extracellular Domain and Are Associated with Increased EGFR Gene Dose

(A) Location of missense mutations within the EGFR protein in a panel of 151 gliomas (132 glioblastomas, 11 WHO grade Il gliomas, and eight
glioblastoma cell lines). Each diamond represents one sample harboring the indicated mutation. Amino acid (AA) numbers are based on the new
convention for EGFR numbering, which starts at the initiator methionine of pro-EGFR. Ligand-binding domains (I and Ill), cysteine-rich domains (Il and
IV), kinase domain (kinase), and the extracellular deletion mutant EGFRvIII [45] are indicated as reference.

(B) Increased EGFR gene dose in tumors harboring EGFR missense mutations. The array (left) shows a high-resolution view of Affymetrix 100K SNP array
at the EGFR gene locus for ten glioblastoma tumors and three normal controls (sample numbers are indicated above each column). EGFR mutation and
log, ratio (see Methods) are indicated below each column. The plot (left) shows a comparison of EGFR gene copy number determination by SNP array
(y-axis, EGFR log, ratios) and FISH (x-axis). AMP, amplified; NON-AMP, non amplified.

(C) RT-PCR for EGFRvIII and full-length EGFR in 14 fresh-frozen glioblastoma tumors (see Methods). The upper band represents full-length EGFR (1,044

bp), the lower band EGFRvIII (243 bp), and the inset shows glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RT-PCR results.

doi:10.1371/journal.pmed.0030485.g001

generate logs ratios. Logs ratios were smoothed using the
breakpoint analysis method in the R package GLAD (Gain
and Loss Analysis of DNA) [12]. Regions were considered
amplified if their smoothed logs ratio exceeded 0.3 (half the
variation seen with a single-copy gain).

Fluorescence In Situ Hybridization

Dual-probe fluorescence in situ hybridization (FISH) was
performed on paraffin-embedded sections with locus-specific
probes for EGFR and the centromere of Chromosome 7 as
previously described [9].

Determination of EGFRvIII Expression

RNA was extracted from fresh frozen tumor samples and
EGFRvlIII expression determined by two independent RT-PCR
assays for each sample. Primer pairs included: #1F 5'-
CTTCGGGGAGCAGCGATGCGAC-3', #1R 5'-ACCAATACC-
TATTCCGTTACAC-3', #2F 5'-GAGCTCTTCGGGGAGCAG-
3, and #2R 5'-GTGATCTGTCACCACATAATTACCTTTCTT-
3’. EGFRVIII expression was also examined by immunohisto-
chemistry and/or immunoblotting depending on the avail-
ability of tissue samples.

Quantification of Mutant EGFR Alleles

The abundance of missense and wild-type EGFR alleles in
tumor DNA samples was determined by PCR-cloning and
sequencing of respective EGFFR exons. PCR products were
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ligated into PCR2.1-Topo vectors (Invitrogen) and trans-
formed into E. coli. After transformation, bacteria were plated
onto selection plates and grown overnight. For each DNA
sample, 65-94 colonies were isolated using a colony picking
robot (QPix2, Genetix Limited, http://[www.genetix.com),
grown overnight, and bidirectionally sequenced at the Broad
Institute. Sequence traces were analyzed using Mutation
Surveyor software (SoftGenetics).

EGFR Expression Constructs

Retroviral EGFR expression constructs containing puro-
mycin (pBabe-puro-EGFR) [13] or neomycin-resistance genes
(pLXSN-neo-EGFR) [14] were used for site-directed muta-
genesis using the Quick-Change Mutagenesis XL kit (Stra-
tagene, http://www.stratagene.com). pLXSN-neo-EGFR
retroviral constructs for EGFR and EGFRvIII were generously
provided by David Riese 2nd (Purdue University, West
Lafayette, Illinois, United States) and Webster Cavenee
(Ludwig Institute for Cancer Research, La Jolla, California,
United States). pBabe-Puro-based viral stocks were generated
by transfecting the Phoenix 293T packaging cell line
(Orbigen, http://lwww.orbigen.com) with the pBabe-Puro
retroviral constructs using Lipofectamine 2000 (Invitrogen,
http:/lwww.invitrogen.com). pLXSN-Neo-based viral stocks
were generated by transfecting the human amphotrophic
293-T cell line with pLXSN-Neo retroviral constructs using
Lipofectamine 2000 (Invitrogen). Supernatants were col-
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Figure 2. EGFR Missense Mutations Are Transforming and Tumorigenic

EGFRWT

R108K
T263P
A289V
G598V
L861Q

(A) Anchorage-independent growth of NIH-3T3 cells expressing various EGFR alleles as mean number of colonies = standard deviation (bar graph,
above). The lanes (below) show EGFR and actin immunoblots of whole cell lysates from NIH-3T3 subclones plated in soft agar. EGF (10 ng/ml) was

added to the top agar where indicated.

(B) Tumorigenicity of NIH-3T3 cells stably expressing the indicated EGFR alleles in nude mice. Mean tumor size = standard deviation was determined 3-
4 wk after subcutaneous inoculation into nude mice (n = 6 per cell line).

doi:10.1371/journal.pmed.0030485.9002

lected 24-48 h post-transfection, filtered (0.45 uM), and used
to infect NIH-3T3 cells, Ba/F3 cells, and human astrocytes.

Expression of EGFR Alleles in NIH-3T3 Cells

Cells cultured in DMEM supplemented with 10% calf
serum were infected with pBabe-Puro-based viral stock in the
presence of polybrene. Beginning 2 d after infection, cells
were selected in puromycin (2 ug/ml) for 3 d. Pooled NIH-3T3
cells stably expressing respective EGFR alleles at comparable
EGFR protein levels were examined for their ability to induce
colony formation in soft agar and tumor growth in nude
mice. For soft agar assays, 1 X 10° NIH-3T3 cells were
suspended in a top layer of DMEM supplemented with 10%
calf serum and 0.4% Select Agar (Gibco/lnvitrogen) and
plated on a bottom layer of DMEM supplemented with 10%
calf serum and 0.5% Select Agar. EGF (10 ng/ml) was added to
the top agar where indicated. Pictures of colonies were taken
2-3 wk after plating. Colonies were counted from ten random
images (40X magnification) taken from each well. Colonies
were counted from three replicate wells with the average
number represented. In vivo tumorigenicity assays were
performed in three mice (two injections/mouse) for each cell
line. For each injection, 2 X 10% cells were injected
subcutaneously into each nude mouse (Taconic, http:/lwww.
taconic.com) and three-dimensional tumor volumes calcu-
lated 3-4 wk following injection.

Expression of EGFR Alleles in Ba/F3 Cells

Murine Ba/F3 pro-B lymphocytes [15] were cultured in
RPMI 1640 (Cellgro, Mediatech, http:/lwww.cellgro.com) sup-
plemented with 10% FCS, 100 units/ml penicillin and 100 pg/
ml streptomycin, 1% L-glutamine, and 10% WEHI-3B-
conditioned media. To derive Ba/F3 subclones stably express-
ing various EGFR alleles, BalF3 cells were “spinfected” with
pBabe-puro-EGFR-based viral supernatants and spinfection
repeated after 48 h. Cells were selected for neomycin or
puromycin resistance and maintained in the presence of
interleukin-3 (IL-3). IL-3-independent subclones were de-
rived through prolonged passage in IL-3-depleted media. To
determine sensitivity to erlotinib, 1 X 10% cells were seeded in
96-well flat-bottomed plates with the indicated concentra-
tions of erlotinib. Cell proliferation was assessed 48 h
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postplating using the WST-1 assay (Roche, http://www.roche.
com). Each data point represents the median of six replicate
wells for each Ba/F3 subclone and erlotinib concentration.

Expression of EGFR Alleles in Human Astrocytes

Viral supernatants (pLXSN-neo-EGFR) were used to infect
immortalized human astrocytes expressing the catalytic
subunit of the telomerase holoenzyme and human papillo-
mavirus 16 E6/E7 [16]. Astrocytes were then selected in G418
(Invitrogen) for approximately 10 d.

Results

Missense Mutations in Glioblastoma Cluster in the
Extracellular Domain of EGFR

Encouraged by the recent success in identifying oncogenic
kinase mutations through resequencing of kinase-encoding
genes [17-19], we sequenced the entire coding sequence of
EGFR in 143 human glioma samples and eight glioblastoma
cell lines. Analysis of the initial Sanger sequencing results in
these 151 samples revealed several novel sequence variations
in the coding region of the EGFR. To validate these candidate
mutations via a complementary method, all DNA samples
were reexamined using allele-specific genotyping by MALDI-
TOF mass spectrometry.

In all, we identified EGFR missense mutations in 14.4% (19/
132) of glioblastomas, 12.5% (1/8) of glioblastoma cell lines,
and none (0/11) in lower-grade gliomas. Only one tumor
sample harbored a missense mutation in the EGFR kinase
domain (L861Q), the location of EGFR mutations in lung
cancer, supporting the recent conclusion from other groups
that EGFR kinase domain mutations appear to be a rare event
in this disease [20-22]. The remainder of the EGFR mutations
(18/132 glioblastomas) were located in the extracellular
ligand-binding (I, III) or cysteine-rich (II, IV) domains of the
receptor (Figure 1A). Two evolutionarily highly conserved
amino acid residues (Figure S1) were affected by mutations in
five samples each (R108 and A289). Examination of periph-
eral blood DNA, matched to the tumor DNA by genotyping of
24 SNP loci, showed that eight of the 12 distinct missense
mutations were unambiguously somatic, and one mutation
(E330K) was germline. Three additional missense mutations
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Table 1. EGFR Missense Mutations Identified in a Panel of 151 Glioma Samples

Sample Histology Exon Nucleotide AA Change Somatic Mutation Detection Abundance of EGFR Gene Dose EGFRvIII
o g a
Identifier Change Sanger MALDI-TOF Mutant Allele® .o, SNP-Array®
S001050 GBM 2 G136A, G187C D46N, G63R Somatic Het aF 81/95 (85.3%) AMP 2.63 —
S001073 GBM 3 G323A R108K Somatic Hom + 88/90 (97.8%) AMP 252 —
S001076 GBM 3 G323A R108K Somatic Het® RS 10/82 (12.2%) NON-AMP  n.d. —
S001092 GBM 3 G323A R108K Somatic Het® + 16/93 (17.2%) AMP 25 -
S001094 GBM 3 G323A R108K Somatic Het® ar 7/90 (7.8%) NON-AMP  n.d. =
S003763 GBM 3 G323A R108K Unknown Het® + 3/94 (3.2%) AMP 2.058 +
S001067 GBM 7 A787C T263P Somatic Hom + 83/92 (90.2%) n.d. n.d. n.d.
S001102 GBM 7 A787C T263P Somatic Het + 69/92 (75.0%) AMP 24 —
S001103 GBM 7 A787C T263P Somatic Het® aF 3/65 (4.6%) AMP n.d. —
S001097 GBM 7 C866A A289D Unknown Het + n.d. AMP 0.72 —
S001095 GBM 7 G865A A289T Unknown Het < n.d. NON-AMP  0.17 =
S001090 GBM 7 C866T A289V Somatic Het® + 3/82 (3.7%) NON-AMP  n.d. —
5001108 GBM cell line 7 C866T A289V Unknown Het + 31/92 (33.7%) n.d. n.d. —
5004384 GBM 7 C866T A289V Unknown  Het + 83/90 (92.2%) AMP 2.1 -
S002024 GBM 8 G971T R324L Unknown Het n.d. nd. n.d. 0.4 -
S001026 GBM 8 G988A E330K Germline  Het + 38/94 (40.4%) NON-AMP  n.d. —
S003577 GBM 15 C1787T P596L Somatic Het his 37/89 (41.6%) NON-AMP  n.d. =
S001018 GBM 15 G1793T G598V Somatic Het n.d. 48/94 (51.1%) AMP n.d. —
S001005 GBM 15 G1793T G598V Unknown Hom < 77/92 (83.7%) NON-AMP  nd. n.d.
S001071 GBM 21 T2582A L861Q Somatic Het + nd. AMP 249 n.d.

Tabulated are sample identification numbers, source of the DNA (primary tumor versus cell line), site of the mutation (exon number, nucleotide change, amino acid change), homozygous
versus heterozygous occurrence of the mutation, genotype of corresponding germline DNA, mutation detection method (Sanger sequencing, MS genotyping), abundance of the mutant
EGFR allele (see Methods section), EGFR gene dosage, and EGFRVIII status. The sample set included 132 glioblastomas, 11 WHO grade Il gliomas, and eight glioblastoma cell lines.

“Number of colonies with mutant/number of colonies with wild-type EGFR.
PSmoothened log, ratio at the EGFR locus.

AA, amino acid; AMP, amplified; GBM, glioblastoma; Het, heterozygous; Hom, homozygous; n.d., not determined (failed reaction or sample not available); NON-AMP, not amplified.

doi:10.1371/journal.pmed.0030485.t001

(A289D, A289T, and R324L) were found in tumors for which
no normal tissue was available (Table 1). None of the missense
mutations were detected in germline DNA from 270 normal
control individuals.

To define which fraction of the EGFR pool represented the
mutant allele in gliomas with EGFR missense mutations, we
employed a PCR-cloning strategy previously used by our
laboratories for mutation detection in clinical samples [23].
The mutant EGFR allele represented 30%-98% of the
receptor pool in two-thirds (10/16) of all examined cases
and over 50% in at least one tumor representing the most
common amino acid changes: R108K, T263P, A289V, and
GbH98V (Table 1). Lower abundance of the mutant EGFR allele
in other samples might be due to contaminating stromal
tissue, because genomic DNA was extracted from frozen
tumor aliquots without prior microdissection.

We also genotyped genomic DNA from 119 primary lung
tumors to detect EGFR ectodomain mutations. While 13.4%
(16/119) of these lung tumor samples harbored mutations in
the EGFR kinase domain, we did not detect any of the glioma-
related EGFR ectodomain mutations in this sample set.

EGFR Ectodomain Mutations Are Associated with
Increased EGFR Gene Dose

Since EGFR is amplified in about 40% of human
glioblastomas [4], we determined the relationship between
EGFR missense mutation and EGFR gene dose in our tumor
samples. Of 17 tumors with EGFR missense mutations, 58.8%
(10) showed evidence for EGFR amplification by FISH and/or
Affymetrix 100K SNP genotyping arrays (Figure 1B; Table 1).
This distribution suggests that EGFR missense mutations are
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associated with EGFR amplification and raises the question of
whether EGFR missense mutations in glioblastoma co-occur
with or are mutually exclusive of the EGFRvIIl mutation,
which is found almost exclusively in glioblastomas with
increased gene dosage [24]. Using at least two independent
assays for the determination of EGFRuvlII status, we identified
the EGFRvIII allele in 28.3% (13/46) of gliomas without EGFR
missense mutation and 6.3% (1/16) tumors with EGFR
missense mutation (Figure 1C; Table 1); note that this tumor
showed vastly lower levels of EGFRvIII (Figure 1C, lane 12).
These findings suggest that EGFR ectodomain mutations
occur independently of EGFRvIII in glioblastoma and provide
an alternative mechanism for EGFR activation in this disease.

EGFR Ectodomain Mutants Are Oncogenic

To test the oncogenicity of the glioma-related EGFR
missense mutations, we transduced NIH-3T3 fibroblasts with
retroviruses encoding either wild-type EGFR or selected
EGFR missense mutants (encoding R108K, T263P, A289V,
G598V, and L861Q). Ectopic expression of all EGFR mutants
examined in NIH-3T3 cells conferred anchorage-independ-
ent colony formation in soft agar (Figure 2A). In contrast,
expression of wild-type EGFR induced a transformed
phenotype only in the presence of exogenous EGF, as
previously reported [25,26].

To further analyze the oncogenic potential of the EGFR
mutants, NIH-3T3 subclones stably expressing the same
missense mutant receptors (encoding R108K, T263P, A289V,
Gb98V, and L861Q) were inoculated subcutaneously into
nude mice. NIH-3T3 cells infected with empty vector or wild-
type EGFR-expressing virus did not yield any measurable
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Figure 3. Basal Activation and Ligand Response of EGFR Ectodomain Mutants

(A) Increased EGFR tyrosine phosphorylation of A289V-EGFR. 293T cells were transiently transfected with green fluorescent protein (GFP; control), wild-
type EGFR, or A289V-EGFR. At 24 h after transfection, 24 cells were serum starved for 12 h and then lysed. Shown are immunoblots of
immunoprecipitated EGFR (left blots) and whole cell lysates (right blots).

(B) Increased basal activity of EGFR missense mutants in human astrocytes. Immortalized human astrocytes were stably infected with wild-type EGFR or
the indicated EGFR missense mutants. Shown are total phosphotyrosine (PY), Y1068-EGFR, total EGFR, and PI3K p85 (loading control) immunoblots of
whole cell lysates from cells following 12 h of serum starvation. The solid arrow at the PY position represents tyrosine-phosphorylated EGFR, and the
interrupted arrows indicated other differentially tyrosine-phosphorylated proteins. The inset shows an anti-EGFR immunoblot of parental astrocytes
(far-left lane) and stable astrocyte subclones (designated in remaining five lanes) growing in full serum.

(C) Basal receptor phosphorylation and EGF-responsiveness of wild-type EGFR and four different EGFR ectodomain mutants stably expressed in Ba/F3
murine hematopoietic cells. Shown are immunoblots of stable Ba/F3 subclones after 12 h of serum starvation (— EGF) and 15 min following EGF-
induction (0.5 or 5 ng/ml EGF).

doi:10.1371/journal.pmed.0030485.9003

tumors within the four-week observation period. In contrast, main mutants, we first examined the basal catalytic activity of
NIH-3T3 cells expressing each of the tested EGFR missense A289V-EGFR in transiently transfected 293T cells using
mutants produced large tumors at the inoculation site in all EGFR autophosphorylation as a readout for receptor

mice within three to four weeks (Figure 2B). activation. EGFR autophosphorylation was determined by

measuring the total phosphotyrosine content of the immu-

EGFR Ectodomain Mutants Are Basally Phosphorylated
and Are Responsive to Ligand

Signal transduction through EGFR is determined by its
basal catalytic activity, receptor activation by ligand, and

noprecipitated receptor (Figure 3A, left blot) and by
immunoblotting of whole cell lysates with several phospho-
site-specific anti-EGFR antibodies (Figure 3A, right blot).

signal termination through intracellular compartmentaliza- Compared to wild-type EGFR, the ectodomain mutant
tion of the receptor-ligand complex, receptor dephosphor- A289V-EGFR showed a marked increase in receptor auto-
ylation, and degradation [27]. To explore the biochemical phosphorylation in the absence of ligand or serum. We
basis for the gain of function observed with EGFR ectodo- subsequently examined a more extensive panel of EGFR
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Figure 4. EGFR Missense Mutations Sensitize Cells to EGFR Kinase
Inhibitors

(A) Effect of increasing concentrations of the EGFR inhibitor erlotinib (0-
10 uM) on the viability of IL-3 independent Ba/F3 subclones expressing
EGFR ectodomain mutants (R108K, T263P, A289V, G598V, and EGFRvIIl),
the EGFR kinase domain mutants (L858R and L861Q), or the erlotinib-
resistant EGFR double mutant L858R-T790M (LTM). Parental Ba/F3 cells
and Ba/F3 cells expressing wild-type EGFR are not IL-3 independent and
were included as controls. Viability (a mean percent of control =+
standard deviation) was determined after exposure to erlotinib for 48 h.
(B) Oncogenic EGFR ectodomain mutations map to interdomain
interfaces. Shown are ribbon and surface diagrams of the EGFR [46]
with sites of amino acid substitutions highlighted. Blue, domain I; green,
domain II; red, domain Ill; and yellow, domain IV. Sites of the most
prevalent amino acid substitutions are shown in red. Images were
created with PyMOL (http://pymol.sourceforge.net/). P596 is not visible
in this view.

doi:10.1371/journal.pmed.0030485.9004

missense mutants (T263P, A289V, G598V, L861Q) in immor-
talized human astrocytes stably transduced with these
receptors. Compared to astrocytes overexpressing wild-type
EGFR, sublines expressing EGFR missense mutants showed an
increased phosphotyrosine content of EGFR and several
other unidentified proteins under serum-free conditions
(Figure 3B).

We also expressed selected EGFR mutants (R108K, T263P,
A289V, G598V, L.861Q)) in murine hematopoietic cells (Ba/F3
cells) which do not express any EGFR family members [14] but
otherwise retain functional properties of the EGF-signaling
pathway [28-30]. Consistent with our findings in 293T cells
and astrocytes, all examined EGFR ectodomain mutants
showed increased tyrosine phosphorylation under serum-
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starved conditions and were responsive to exogenous EGF
(Figure 3C). We also noted that EGF stimulation led to a more
pronounced drop of EGFR levels in Ba/F3 cells expressing
wild-type EGFR than in subclones expressing EGFR ectodo-
main mutants (Figure 3C), reminiscent of the impaired
ligand-induced receptor downregulation reported for se-
lected EGFR kinase domain mutants [31].

Sensitivity of EGFR Ectodomain Mutants to EGFR Kinase
Inhibitors

The presence of identical missense mutations in multiple
patient samples and their oncogenicity in standard trans-
formation assays suggest that these mutants play a role in
gliomagenesis. It also raises the question whether these
mutations might sensitize transformed cells to EGFR kinase
inhibitors. Ba/F3 cells provide a unique model system to
examine kinase inhibitor sensitivity [32-35] because stable
expression of oncogenic kinases in these cells can relieve
them from their intrinsic dependence on IL-3 for survival
[15,36]. As expected from our results in NIH-3T3 cells,
expression of the tested EGFR missense mutants but not wild-
type EGFR was able to relieve Ba/F3 cells from IL-3 depend-
ence. Addition of the EGFR kinase inhibitor erlotinib to the
media had little or no effect on the viability of parental Ba/F3
cells growing in the presence of IL-3 or on BalF3 cells
expressing the drug-resistant EGFR double-mutant L858R/
T790M-EGFR. However, erlotinib did induce dose-dependent
cell death in BalF3 subclones expressing the EGFR ectodo-
main mutants (missense and vIII truncation) or EGFR kinase
domain mutants (L858R and L861Q) (Figure 4A). Of note,
erlotinib-induced cell death of BalF3 cells expressing EGFR
ectodomain mutants occurred at IC-50 values of 50-150 nM,
drug concentrations that are well below the concentrations
achieved in human plasma [37]. These data suggest that EGFR
missense mutants sensitize transformed cells to EGFR kinase
inhibitors similar to EGFRVIII or lung cancer-related kinase
domain mutants, both of which have been associated with
clinical responses to EGFR kinase inhibitor therapy
[9,19,38,39].

We recently reported the results of a glioblastoma clinical
trial with EGFR kinase inhibitors which associated clinical
responses to the coexpression of EGFRvIII and PTEN [9]. To
investigate whether clinical responses might also be linked to
the presence of EGFR ectodomain mutations, we reexamined
all available tumor DNA samples from this clinical trial. We
identified the ectodomain mutant R108K-EGFR in 14% (1/7)
gliomas that responded to erlotinib. This tumor, however,
also expressed EGFRuvlIl, raising the possibility of independ-
ent clones arising from a common progenitor with EGFR
amplification. We also identified the R108K EGFR mutation
in 7% (1/5) gliomas that failed EGFR kinase inhibitor therapy,
but loss of PTEN in this tumor provides a potential
explanation for treatment failure (Table S3). Larger clinical
trials are required to ascertain the contribution of EGFR
missense mutants to EGFR Kkinase inhibitor response in
glioblastoma.

Discussion

We have identified novel oncogenic missense mutations in
the ectodomain of EGFR in glioma. The association of these
mutations with increased EGFR gene dosage raises the
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question of whether similar ectodomain missense mutations
might exist in other malignancies with EGFR amplification or
polysomy of Chromosome 7. More broadly, our results
suggest that ectodomain missense mutations in other tyrosine
kinase genes may be transforming events in multiple cancers,
arguing for an extension of current kinase gene resequencing
efforts beyond the kinase domains [40,41].

The ligand-independent basal phosphorylation of the
EGFR missense mutants in our study is consistent with their
ability to confer NIH-3T3 cells with the ability to grow in
soft agar in the absence of exogenous EGF. Whether all
EGFR ectodomain mutants share a common mechanism of
oncogenic receptor conversion warrants further study. A
common mechanism is suggested by the structural observa-
tion fact that many of the resulting amino acid substitutions
map to interdomain interfaces. R108K and A289V/D/T occur
at the domain I/II interface, P569L and G598V occur at the
domain II/IV contact, and T263P occurs in domain II just
before the extended loop that contacts domain IV (Figure
4B). Differences in constitutive receptor activity
(GH98V>A289V>T263P), on the other hand, point toward
alternative mechanisms of oncogenic receptor conversion.

Three of the EGFR missense mutations (encoding P596L,
G598V, and A289V) were previously observed in smaller
cohorts of glioblastoma tumors [24,42]. The identification of
additional ectodomain mutations in our study might have
been facilitated by the large number of tumors, near-
complete coverage of the EGFR coding sequence, and use
of MALDI-TOF mass spectrometry genotyping in addition to
Sanger sequencing. Since most of the patients in our study
were of Northern European descent, we were unable to
establish whether the prevalence of EGFR ectodomain
mutations in glioblastoma might be affected by ethnicity as
has been shown for EGFR kinase domain mutations. The
distribution of EGFR missense mutations in glioblastoma
(largely extracellular) and lung cancer (exclusively kinase
domain) suggests fundamental differences in oncogenic
EGFR signaling between these two tumor types. Importantly,
however, both classes of mutants—as well as EGFRvIII—
appear to sensitize transformed cells to EGFR kinase
inhibitors in a preclinical model system that has been
predictive of clinical responses [33,43]. Based on the
experience with kinase inhibitors for chronic myeloid
leukemia [44], the development of sensitive methodologies
to monitor the EGFR pool before and during therapy will
constitute an important step in advancing the current use of
EGFR kinase inhibitors for cancer.

Supporting Information

Figure S1. Protein Sequence Alignment for EGFR Missense Mutations
Alignment (ClustalW) of the human EGFR protein sequences ERBB2,
ERBB3, ERBB4, and the EGFR protein sequence of Mus musculus,
Rattus morvegicus, Sus scrofa, Danio rerio, and Drosophila melanogaster and
Xiphophorus for the residues affected by missense mutations.

Found at doi:10.1371/journal.pmed.0030485.sg001 (29 KB PDF).
Table S1. PCR and Extension Primers for MALDI-TOF Mass
Spectrometry Genotyping of 24 SNPs

Found at doi:10.1371/journal. pmed.0030485.st001 (18 KB XLS).
Table S2. PCR and Extension Primers for EGFR MALDI-TOF Mass
Spectrometry Genotyping

Found at doi:10.1371/journal.pmed.0030485.st002 (15 KB XLS).
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Table S3. Ectodomain Mutations in Glioblastomas and Response to
EGFR Kinase Inhibitor Therapy

Patients were classified as responders (patients 1-7) or nonrespond-
ers (patients 8-26) based on radiographic criteria [9].
Found at doi:10.1371/journal.pmed.0030485.st003 (16 KB XLS).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov) accession numbers of the
proteins discussed in this paper are human EGFR protein
(NM__005228), ERBB2 26 (NM__004448), ERBB3 (NM__001982),
ERBB4 (NM__005235); and the EGFR proteins of Mus musculus
(NM__207655), Rattus norvegicus (NM__031507), Sus scrofa
(NM__214007), Danio rerio (NM__194424), Drosophila melanogaster
(NM__057410), and Xiphophorus (X56319)
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Editors’ Summary

Background. Normally, cell division (which produces new cells) and cell
death are finely balanced to keep the tissues and organs of the human
body in working order. But sometimes, cells acquire changes
(mutations) in their genetic material that allow them to divide
uncontrollably to form cancers—life-threatening, disorganized masses
of cells. Cancer treatments often involve drugs that kill rapidly dividing
cells but, although these hit cancer cells hardest, they also damage
some normal tissues. Now, though, some of the specific changes that
allow cancer cells to divide uncontrollably have been identified and
drugs that attack only these abnormal cells are being developed. One of
these—erlotinib—inhibits the activity of epidermal growth factor
receptor (EGFR), a “receptor tyrosine kinase” that sits in the cell
membrane. The interaction of epidermal growth factor (EGF)—a
messenger protein—with the extracellular portion (or domain) of EGFR
activates its intracellular part (a kinase enzyme). This adds phosphate
groups to tyrosine (an amino acid) in proteins that form part of a
signaling cascade that tells cells to divide. Cancer cells often have
alterations in EGFR signaling. Some have extra copies of the EGFR gene
(EGFR amplification); others make a short version of EGFR that is always
active because it lacks the extracellular domain that binds EGF; yet
others contain EGFR that is permanently active because of mutations in
its kinase domain.

Why Was This Study Done? Erlotinib can help only patients whose
tumor growth is dependent on EGFR signaling. To identify these patients
it is necessary to have a detailed catalog of the mutations that occur in
EGFR in tumors and to know which mutations drive uncontrolled cell
growth. In this study, the researchers have catalogued and characterized
the mutations in EGFR that occur in glioblastoma, a deadly type of brain
tumor. The researchers chose this tumor type for their study because
EGFR amplification and loss of the extracellular domain of EGFR are both
common in glioblastomas and because about one in five patients with
glioblastoma responds well to EGFR kinase inhibitors.

What Did the Researchers Do and Find? The researchers sequenced
the whole coding sequence of the EGFR gene in more than 100
glioblastomas. Nearly 15% of the tumors contained missense muta-
tions—changes that alter the amino acid sequence of EGFR. Only one
tumor had a mutation in the EGFR kinase domain; the rest had mutations
in its extracellular domain. To test whether these newly identified
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mutations might contribute to cancer development (oncogenesis), the
researchers introduced mutated or normal EGFR genes into non-
tumorigenic mouse cells. Only the cells that contained the mutated
EGFR genes formed tumors when injected into mice, indicating that the
nontumorigenic cells had been “transformed” into cancer cells by the
mutated EGFR genes. Finally, the researchers showed that EGFR
containing the extracellular missense mutations had kinase activity in
the absence of EGF when expressed in human and mouse cells, and that
the growth of cells transformed by expression of the mutated genes was
sensitive to erlotinib.

What Do These Findings Mean? These findings identify missense
mutations in the extracellular domain of EGFR as a new way to
oncogenically activate this protein. Until now researchers have
concentrated on the kinase domain of this and other receptor tyrosine
kinases in their search for oncogenic mutations, but the results of this
study suggest that future searches should be much broader. The
distribution of EGFR missense mutations in glioblastoma contrasts with
that in lung cancer, in which alterations in EGFR signaling are also
implicated in cancer development but all the oncogenic mutations are in
the kinase domain. Fortunately, EGFR kinase inhibitors like erlotinib have
broad activity: They inhibit the growth of cells transformed by the
expression of EGFR containing extracellular domain mutations or kinase
mutations, or by the expression of the short EGFR variant. This bodes
well for the use of these drugs in patients with glioblastoma. However,
before these inhibitors become a standard part of cancer treatments,
sensitive techniques need to be developed to analyze tumors for these
mutations so that the patients who will benefit from these targeted
therapies can be identified.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030485.

e MedlinePlus encyclopedia entries on cancer and on brain tumors

US National Cancer Institute information for patients and professionals
on brain tumors

Wikipedia pages on protein kinases, epidermal growth factor receptor,
and erlotinib (note that Wikipedia is a free online encyclopedia that
anyone can edit)
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