140 research outputs found

    Investigating Microtopographic and Soil Controls on a Mountainous Meadow Plant Community Using High-Resolution Remote Sensing and Surface Geophysical Data

    Get PDF
    This study aims to investigate the microtopographic controls that dictate the heterogeneity of plant communities in a mountainous floodplain-hillslope system, using remote sensing and surface geophysical techniques. Working within a lower montane floodplain-hillslope study site (750 m × 750 m) in the Upper Colorado River Basin, we developed a new data fusion framework, based on machine learning and feature engineering, that exploits remote sensing optical and light detection and ranging (LiDAR) data to estimate the distribution of key plant meadow communities at submeter resolution. We collected surface electrical resistivity tomography data to explore the variability in soil properties along a floodplain-hillslope transect at 0.50-m resolution and extracted LiDAR-derived metrics to model the rapid change in microtopography. We then investigated the covariability among the estimated plant community distributions, soil information, and topographic metrics. Results show that our framework estimated the distribution of nine plant communities with higher accuracy (87% versus 80% overall; 85% versus 60% for shrubs) compared to conventional classification approaches. Analysis of the covariabilities reveals a strong correlation between plant community distribution, soil electric conductivity, and slope, indicating that soil moisture is a primary control on heterogeneous spatial distribution. At the same time, microtopography plays an important role in creating particular ecosystem niches for some of the communities. Such relationships could be exploited to provide information about the spatial variability of soil properties. This highly transferable framework can be employed within long-term monitoring to capture community-specific physiological responses to perturbations, offering the possibility of bridging local plot-scale observations with large landscape monitoring

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Sleep Disorders and Demand for Medical Services: Evidence from a Population-Based Longitudinal Study

    Get PDF
    Background: The aim of this study was to investigate whether insomnia and obstructive sleep apnea (OSA) were predictors of hospitalizations or emergency department visits during two years following the Sao Paulo Epidemiologic Sleep Study (EPISONO) sample. Methods and Findings: All participants (n = 1,101) who underwent a baseline evaluation between July and December 2007 were contacted in December 2009 and asked to fill out a questionnaire about body weight changes, number of hospitalizations and visits to the emergency department. Participants lost during the follow-up period represented 3.2 % (n = 35) and 7 subjects had died. Hospitalizations were reported by 116 volunteers (10.5%) and emergency department visits were reported by 136 participants (12.4%). The average body mass index (BMI) did not vary significantly between the first and the second assessment [26.7(95%CI:26.3–27.1) vs. 26.9(26.5–27.4) kg/m2]. After adjusting for confounders, a multiple logistic regression model revealed that female gender [1.4(1.0–1.9)], age 40years,insomniadiagnosedaccordingtotheDSMIVcriteria[1.6(1.02.6)],andapneahypopneaindex40 years, insomnia diagnosed according to the DSM-IV criteria [1.6(1.0–2.6)], and apneahypopnea index 15 [1.5(1.0–2.2)] were predictors of hospitalizations and/or demand for emergency services. Conclusion: Our study of a probabilistic sample of the Sao Paulo inhabitants shows that over a period of two years, insomnia and OSA were both associated with health impairment. Considering the high prevalence and public health burden of slee

    Transferrin changes in haemodialysed patients

    Get PDF
    Transferrin (Tf) is a glycoprotein responsible for iron transport in the human body. Physiologically in reaction with Concanavalin A, Tf occurs in four distinct variants Tf1, Tf2, Tf3 (apo-Tf) and Tf4. It was reported recently that Tf is changing, particularly during acute phase response, taking place among others in end-stage renal disease. In this study, we wanted to find the answer to three main questions: firstly, how Tf is changing in patients treated with maintenance haemodialysis (mHD), secondly, whether there are any Tf changes in the course of mHD treatment, and thirdly, what factors can affect Tf microheterogeneity in these patients. Studies were performed on 80 haemodialysed patients and 21 healthy volunteers. The Tf concentration was determined by the rocket immunoelectrophoresis, and its microheterogeneity was assessed by the ConA crossed immunoaffinity electrophoresis. During the annual observation of the distribution of the Tf variants, we have found both changes of the percentage contents of all Tf variants in the whole Tf concentration and a significant decrease in Tf2, Tf3 and Tf4 serum concentrations. Moreover, we found that decrease in the renal function, duration of mHD, and inflammation may contribute to these above-mentioned changes, which are probably the factors that should be taken into account when explaining the mechanisms of persistence of anaemia in haemodialysed patients

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Physical activity, cardiorespiratory fitness, and metabolic syndrome in adolescents: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In adults, there is a substantial body of evidence that physical inactivity or low cardiorespiratory fitness levels are strongly associated with the development of metabolic syndrome. Although this association has been studied extensively in adults, little is known regarding this association in adolescents. The aim of this study was to analyze the association between physical activity and cardiorespiratory fitness levels with metabolic syndrome in Brazilian adolescents.</p> <p>Methods</p> <p>A random sample of 223 girls (mean age, 14.4 ± 1.6 years) and 233 boys (mean age, 14.6 ± 1.6 years) was selected for the study. The level of physical activity was determined by the Bouchard three-day physical activity record. Cardiorespiratory fitness was estimated by the Leger 20-meter shuttle run test. The metabolic syndrome components assessed included waist circumference, blood pressure, HDL-cholesterol, triglycerides, and fasting plasma glucose levels. Independent Student <it>t</it>-tests were used to assess gender differences. The associations between physical activity and cardiorespiratory fitness with the presence of metabolic syndrome were calculated using logistic regression models adjusted for age and gender.</p> <p>Results</p> <p>A high prevalence of metabolic syndrome was observed in inactive adolescents (males, 11.4%; females, 7.2%) and adolescents with low cardiorespiratory fitness levels (males, 13.9%; females, 8.6%). A significant relationship existed between metabolic syndrome and low cardiorespiratory fitness (OR, 3.0 [1.13-7.94]).</p> <p>Conclusion</p> <p>The prevalence of metabolic syndrome is high among adolescents who are inactive and those with low cardiorespiratory fitness. Prevention strategies for metabolic syndrome should concentrate on enhancing fitness levels early in life.</p

    Spike Timing and Reliability in Cortical Pyramidal Neurons: Effects of EPSC Kinetics, Input Synchronization and Background Noise on Spike Timing

    Get PDF
    In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Δt) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (≤2.45 ms) in response to synchronous compounds of EPSCs with fast rise and decay kinetics. Compounds with slow EPSC kinetics (decay time constants>6 ms) triggered spikes at lower temporal precision (≥6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs

    Developing a new curvilinear allometric model to improve the fit and validity of the 20-m shuttle run test as a predictor of cardiorespiratory fitness in adults and youth

    Get PDF
    This is an accepted manuscript of an article published by Springer in Sports Medicine on 24 September 2020, available online at: https://doi.org/10.1007/s40279-020-01346-0 The accepted version of the publication may differ from the final published version.Background and Objectives: Doubts have been raised concerning the validity of the 20m shuttle run test (20mSRT) as a predictor of cardiorespiratory fitness (CRF) in youth based on Léger’s equation/model. An alternative allometric model has been published recently that is thought to provide, not only a superior fit (criterion validity) but also a more biologically and physiologically interpretable model (construct validity). The purposes of this study were to explore whether allometry can provide a more valid predictor of CRF using 20mSRT compared with Léger’s equation/model. Methods: We fitted and compared Léger’s original model and an alternative allometric model using two cross-sectional datasets (youth, n=306; adult n=105) that contained measurements of CRF (V ̇O2peak /V ̇O2max) and 20mSRT performance. Quality-of-fit was assessed using explained variance (R2) and Bland and Altman’s limits of agreement. Results: The allometric models provided superior fits for the youth (explained variance R2=71.9%) and adult (R2=77.7%) datasets compared with Léger’s equation using their original fixed (R2=35.2%) or re-estimated parameter models (R2=65.9%), confirming that the allometric models demonstrate acceptable criterion validity. However, the allometric models also identified a non-linear “J-shaped” increase in energy cost (V ̇O2peak/V ̇O2max) with faster final shuttle-run speeds, (fitted speed exponent =1.52; 95% CI 1.38 to 1.65). Conclusion: Not only do allometric models provide more accurate predictions of CRF (V ̇O2peak/V ̇O2max; ml.kg-1.min-1) for both youth and adults (evidence of criterion validity), the “J-shaped” rise in energy demand with increasing final shuttle-run speed also provides evidence of construct validity, resulting in a more plausible, physiologically sound and interpretable model

    A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia

    Get PDF
    We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis

    Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs

    Get PDF
    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research
    corecore