64 research outputs found

    Calculating the Fierz Transformation for Higher Orders

    Get PDF
    We consider the higher-order Fierz transformation, which corresponds to expanding a product of ψˉΓψ\bar\psi\Gamma\psi terms into a sum of products of Dirac densities and currents. It is shown that the Fierz transformation can be obtained by solving a large system of linear equations with fractional complex coefficients, which is practical at least up to fourth power.Comment: 6 pages, 3 table

    On the Isovector Channels in Relativistic Point Coupling Models within the Hartree and Hartree-Fock Approximations

    Full text link
    We investigate the consequences of Fierz transformations acting upon the contact interactions for nucleon fields occurring in relativistic point coupling models in Hartree approximation, which yield the same models but in Hartree-Fock approximation instead. We find for four-fermion interactions occurring in two existing relativistic point coupling phenomenologies that whereas in Hartree the isovector-scalar strength, corresponding to delta-meson exchange, is unnaturally small, indicating a possible new symmetry, in Hartree-Fock it is instead comparable to the isovector-vector strength corresponding to rho-meson exchange, but the sum of the two isovector coupling constants appears to be preserved in both approaches. Furthermore, in Hartree-Fock approximation, both QCD-scaled isovector coupling constants are natural (dimensionless and of order 1) whereas in Hartree approximation only that of the isovector-vector channel is natural. This indicates that it is not necessary to search for a new symmetry and, moreover, that the role of the delta-meson should be reexamined.Comment: 10 pages; accepted for publication in Nuclear Physics

    The nonrelativistic limit of the relativistic point coupling model

    Full text link
    We relate the relativistic finite range mean-field model (RMF-FR) to the point-coupling variant and compare the nonlinear density dependence. From this, the effective Hamiltonian of the nonlinear point-coupling model in the nonrelativistic limit is derived. Different from the nonrelativistic models, the nonlinearity in the relativistic models automatically yields contributions in the form of a weak density dependence not only in the central potential but also in the spin-orbit potential. The central potential affects the bulk and surface properties while the spin-orbit potential is crucial for the shell structure of finite nuclei. A modification in the Skyrme-Hartree-Fock model with a density-dependent spin-orbit potential inspired by the point-coupling model is suggested.Comment: 21 pages, latex, 1 eps figure. accepted for publication in annals of physic

    Minimal surfaces in nuclear pasta with the Time-Dependent Hartree-Fock approach

    Get PDF
    In continuation to the studies of the whole variety of pasta shapes in [1], we present here calculations performed with the Hartree-Fock and time-dependent Hartree- Fock method concerning the mid-density range of pasta shapes: The slab-like, connected rod-like (p-surface) and the gyroidal shapes. On the one hand we present simulations of the dynamic formation of these shapes at fi- nite temperature. On the other hand we calculate the binding energies of these shapes for varying simulation box lengths and mean densities. All of these shapes are found to be at least metastable. The slab shape has a slightly lower energy because of the lack of curvature, but among these three configurations the gyroidal shape is metastable for the widest range in mean density

    Enhanced binding and cold compression of nuclei due to admixture of antibaryons

    Get PDF
    We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean--field model assuming that the nucleon and antinucleon potentials are related by the G-parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.Comment: 10 pages, 3 figures, to be submitted to Phys. Lett.

    Thermal photons as a measure for the rapidity dependence of the temperature

    Get PDF
    The rapidity distribution of thermal photons produced in Pb+Pb collisions at CERN-SPS energies is calculated within scaling and three-fluid hydrodynamics. It is shown that these scenarios lead to very different rapidity spectra. A measurement of the rapidity dependence of photon radiation can give cleaner insight into the reaction dynamics than pion spectra, especially into the rapidity dependence of the temperature.Comment: 3 Figure

    Fission barriers and asymmetric ground states in the relativistic mean field theory

    Get PDF
    The symmetric and asymmetric fission path for 240Pu, 232Th, and 226Ra is investigated within the relativistic mean field model. Standard parametrizations which are well fitted to nuclear ground state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativstic calculations. Furthermore, stable octupole deformations in the ground states of Radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativsitic parametrizations.Comment: 30 pages RevTeX, 7 tables, 12 low resolution Gif figures (high resolution PostScript versions are available at http://www.th.physik.uni-frankfurt.de/~bender/nucl_struct_publications.html or at ftp://th.physik.uni-frankfurt.de/pub/bender

    Nonequilibrium fluid-dynamics in the early stage of ultrarelativistic heavy-ion collisions

    Get PDF
    To describe ultrarelativistic heavy-ion collisions we construct a three-fluid hydrodynamical model. In contrast to one-fluid hydrodynamics, it accounts for the finite stopping power of nuclear matter, i.e. for nonequilibrium effects in the early stage of the reaction. Within this model, we study baryon dynamics in the BNL-AGS energy range. For the system Au+Au we find that kinetic equilibrium between projectile and target nucleons is established only after a time tCMeq5 fm/c2RAu/γCMt_{CM}^{eq}\approx 5~fm/c\simeq 2R_{Au}/\gamma_{CM}. Observables which are sensitive to the early stage of the collision (like e.g. nucleon flow) therefore differ considerably from those calculated in the one-fluid model.Comment: 36 pages, Late

    Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction

    Get PDF
    A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov (TDHFB) equations with Gogny interaction is proposed. The feasibility of the TDHFB code is illustrated by the conservation of the energy, particle numbers, and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB code is applied to the isoscalar quadrupole and/or isovector dipole vibrations in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22 and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector dipole strength functions are calculated from the expectation values of the isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure
    corecore