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In continuation to the studies of the whole variety of pasta shapes in [1], we present here calcula-

tions performed with the Hartree-Fock and time-dependent Hartree- Fock method concerning the

mid-density range of pasta shapes: The slab-like, connected rod-like (p-surface) and the gyroidal

shapes. On the one hand we present simulations of the dynamic formation of these shapes at fi-

nite temperature. On the other hand we calculate the binding energies of these shapes for varying

simulation box lengths and mean densities. All of these shapes are found to be at least metastable.

The slab shape has a slightly lower energy because of the lack of curvature, but among these three

configurations the gyroidal shape is metastable for the widest range in mean density.
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(a) sphere (b) rod (c) rod(2)

(d) rod(3) (e) slab

(f) rod(2) bubble (g) rod bubble (h) sphere bubble

Figure 1: (Color online) Typical shapes of pasta structures. Bubble shape illustrations show

gas phase, which is indicated by the color-scale (from 0.03fm−3 (blue/light gray) to 0.12fm−3

(red/dark gray)). This figure is taken from [1].

1. Introduction

1.1 Pasta Matter in Neutron Stars and Supernovae

Compact stars like neutron stars and supernovae [2, 3] contain the very dense nuclear matter.

At these densities nuclear matter is not observable in laboratories, but play a crucial role in these

scenarios. Normal nuclear matter consists of spherical nuclei which can be slightly deformed

because of quantum shell effects to lower their energy. Near the nuclear saturation density ρ0 ≈

0.16fm−3 the nuclear matter is a homogeneous quantum Fermi liquid. In between it takes various

geometries like rods (spaghetti) and slabs (lasagna) to lower the total surface energy [1] and also

more complicated shapes like connected rods (s. Fig. 1). Because of the analogy to Italian pasta,

this matter is commonly known as nuclear “pasta”. At densities just below the nuclear saturation

density the nuclear matter is turned inside out so that the gas phase containing free neutrons take

the pasta shapes. These shapes are called pasta bubble shapes.

Most of the pasta phases are liquid crystals [4] and have therefore special features concerning

the shear viscosity. As the nuclear pasta layer is located between the inner crust and the outer core

in a neutron star, this can affect the rotation between the crust and the core [5]. The special structure

of the pasta shapes may also have an influence on the neutrino scattering and therefore affects the

thermal properties of a supernova or a neutron star, because the neutrinos can carry an immense

part of the energy which is produced during a supernova explosion.
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(a) Primitive (b) Gyroid (c) Diamond

Figure 2: (Color online) Nodal approximation of the triply periodic minimal surfaces (see

eqs.(1.2), (1.3), and (1.4)). The colors mark the different sides of the surface facing the differ-

ent domains.

In order to characterize the different pasta shapes with integral measures, the Minkowski func-

tionals are commonly used. The scalar Minkowski functionals are proportional to the volume V ,

the surface area A, the integral mean curvature
∫

H dA and the Euler characteristic χ =
∫

K dA with

the mean curvature H = (κ1 +κ2)/2 and the Gaussian curvature K = κ1κ2 with the two principal

curvatures κ1 and κ2. Additionally we introduce a tensorial Minkowski functional [6, 7] to describe

the pasta shapes, namely the distribution of the normal vectors on the surface. The eigenvalue ratio

β 0,2
1 of this interface tensor W

0,2
1 (see [7] for the definition) describes the anisotropy of the struc-

tures. If β 0,2
1 = 1, the structure is perfectly isotropic, if the value is below one, the structure is

anisotropic.

1.2 Minimal Surface Shapes

Recently triply periodic minimal surface (TPMS) shapes have come into focus, especially the

Gyroid (G) was investigated [8, 9] in the connection with pasta matter. Gyroids were already found

in solid biological systems, in di-block polymers, and in inverse bicontinous phases in lipid water

systems (s. e.g. Refs. [10, 11, 12]). An interesting feature is that the Gyroid network contains

screw axes. Also the rod(3) structure shown in Fig. 1(d) is topologically equivalent to the Prim-

itive (P) TPMS. Together with the Diamond (D) these three surfaces (s. Fig. 2) form a group of

TPMS which are related by the Bonnet transformation [13]. Note that the Bonnet transformation

is a transformation between these shapes bending the surfaces isomorphically, but has no physical

relevance, because all intermediate surfaces have self-intersections. All these surfaces have mini-

mal surface area under different boundary conditions. This is equivalent to H = 0 at each point of

the surface. The Bonnet transformation relates the cubic periodic lengths of the TPMS such that

all metric and curvature properties are unchanged via aP/aG = 0.81 and aD/aG = 1.27.

The introduced TPMS divide the space into two half-spaces (domains) with equal volume.

Since the pasta shapes can cover an arbitrary volume fraction u the TPMS idea has to be expanded

to the constant mean curvature (CMC) surfaces. With this definition the volume fractions can

be varied keeping the topology of the surface. The surfaces can be approximated with the nodal
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approximation. Together with the slab it yields

φS = φ0 · (cosx) , (1.1)

φP = φ0 · (cosx+ cosy+ cosz) , (1.2)

φG = φ0 · (cosxsin y+ cosysin z+ cos zsinx) , (1.3)

φD = φ0 · (cosxcos ycos z+ cosxsin ysin z+ sinxcos ysin z+ sinxsin ycos z) , (1.4)

with a parameter φ0. The TPMS are approximated by φi = 0 with i ∈ {S,P,G,D}. By tuning the

parameter φi the volume fraction u can be varied. Regarding the rough voxelization of the grid the

calculations are performed on, the nodal approximation is sufficient.

There can be different kinds of TPMS structures. The single structures are characterized by

the matter covering one domain. The topology of the two domains is equal, the domains only can

have different volume fractions. The single P structure has an Euler characteristic of χP = −2, for

G χG = −4, and for D χD = −8. These conditions are not sufficient to identify these structures.

There can be topologically different structures with the same Euler characteristic.

There are two double structures. One is composed of two TPMS structures which are bounded

by two CMC surfaces with mean curvature ±H . They are separated by the so-called matrix phase.

The other double structure is characterized by the matter filling out the matrix phase. In the fol-

lowing we concentrate on the single structures, because the double structures were not found to be

metastable under the assumed conditions.

1.3 The Hartree-Fock and Time-Dependent Hartree-Fock Method

The TPMS structures in pasta matter are investigated with the Hartree-Fock and time-

dependent Hartree-Fock method which are both well established methods for nuclear ground state

calculations or reaction dynamics simulations, respectively. For both methods the wave functions

are restricted to a single slater determinant. For the Hartree-Fock method the variational principle

δ 〈Ψ|Ĥ −E|Ψ〉= 0 (1.5)

is solved. This is done iteratively until convergence and with it the ground state is reached. The

damped gradient step with kinetic energy inversion is utilized here.

For the time-dependent Hartree-Fock method the time-dependent variational principle

δ 〈Ψ|Ĥ − ih̄
∂

∂ t
|Ψ〉= 0 (1.6)

is solved. This can be done by applying the time evolution operator to the single particle wave

functions for finite time steps. In this case we use time steps of ∆t = 0.1 fm
c

.

All calculations are performed on an equidistant 3D grid with a grid spacing of ∆r ∈

[0.875fm,1.125fm] and an even number NX = NY = NZ = 16 − 24 of grid points. Thus boxes

result which have a box length of 15−26fm. We take periodic boundary conditions. For a detailed

description of the methods and the implementation see [14].
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Pasta Matter Nodal Gyroid

22fm

Figure 3: (Color online) Gyroidal pasta shape: the green structure on the left shows the density

distribution of of nuclear pasta matter computed with TDHF for an average density of 0.06fm−3

and box length a = 22fm. Shown is the surface of half maximum density with the solid volume

representing densities above this value. The blue structure on the right shows the nodal approxi-

mation of a gyroid CMC surface at the same volume fraction. Orange bars illustrates the gyroid

network in the void phase of both the pasta shape and the nodal approximation, showing that they

are indeed homotopic. Black frames are guides to the eye, of size 1.25a the cubic lattice parameter.

This figure is taken from [15].

2. Results

2.1 Time-Dependent Calculations

In earlier calculations pasta shapes were found which are topologically equal to P structures (s.

Fig. 1). These calculations were performed with a box length of 16fm. Assuming that the nuclear

pasta Hamiltonian can be described in terms of the curvature, the Bonnet transformation predicts,

that G structures may appear at larger box lengths. Therefore we performed calculations with box

lengths of 20−24fm with random initial conditions. To that end α-particles are distributed on the

grid randomly and additional background neutrons are distributed as the lowest plane wave states.

The proton fraction for all calculations is set to XP = 1/3. For each box length ten calculations

were performed with a mean density of 0.06fm−3.

In order to identify the G shapes, a preselection with the Euler characteristic is done. To

identify G clearly, a gyroid network is used (s. Fig 3). If this network fits perfectly into the voids,

the structure is gyroidal.

The Euler characteristics for the resulting shapes are shown in Fig. 4. We marked the G

structures explicitly by shaded areas. Not all of the shapes which have an Euler characteristic of

-4 are G shapes. Furthermore the Euler characteristics decrease for increasing box lengths which

indicates more labyrinthlike structures. As nuclear matter has an intrinsic length scale and thus

tends to build up connections of a certain size, more rodlike connections can be built in bigger

boxes.

In sum we find seven G shapes. These shapes have the topology of G but all of them are

strongly anisotropic. β 0,2
1 takes values down to 0.5, but their topology remains stable in the the

time-evolution.
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Figure 4: (Color online) Histograms of the resulting Euler characteristic χ for different box lengths

20−24fm of the dynamic, randomly initialized calculations. The shaded area marks the identified

gyroidal structures. This figure is taken from [15].

2.2 Ground State Calculations

Additionally we perform ground state calculation in order to test the (meta-)stability of the

TPMS. To that end we initialize the calculations only with plane wave wave-functions again with a

proton fraction of XP = 1/3. For the first 1000 iterations we add an additional potential. We perform

for the different values of mean density and the corresponding volume fractions u calculations with

the potentials φi from the equations 1.1, 1.2, 1.3, and 1.4 with φ0 = 10MeV. These potentials force

the nuclear matter to take the shapes of the TPMS or the slab, which is expected to appear at the

same densities and thus is competitive to the TPMS, respectively. The calculations are performed

for further 9000 iteration without the potential. If the pasta structures stays topologically equal to

the structure the matter was forced to in the first 1000 iterations, we regard this state as a metastable

state.

As the nuclear pasta has a smooth transition between the void and the nuclear matter the

value for u is calculated here with the Gibbs dividing surface method. All of the nuclear matter is

expected to be in the liquid phase with a constant density. Thus the volume fraction is

u =
ρ

ρl

(2.1)

where ρl is the maximum density on the grid and ρ is the mean density.

In Fig. 5 the resulting binding energies per nucleon are plotted. Note that a larger binding en-

ergy refers to a stronger binding. Only very few D structures were stable at the chosen parameters.

These were left out for simplicity. We expect D structures to be meta-stable at larger boxes with

a box length larger than 26fm which was computationally not feasible. All resulting G shapes are

only slightly anisotropic with β 0,2
1 > 0.75.

G and P structures show a strong dependence on the box length. P has a maximum binding

energy for a = 22fm. Taking the Bonnet transformation the maximum binding energy for G should

be reached at a box length of 27fm. Thus the calculated values for 26fm can serve as a good

approximation for the maximum binding energies. The slab does not show a strong scaling with

the box length. The maximum binding energies for the slab is slightly larger than the maximum

binding energies for the TPMS, except for the highest volume fraction, but at these high densities
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Figure 5: (Color online) Binding energies per nucleon E/N for the metastable ground states for

different volume fractions. G (gyroid, dots), P (primitive, squares) and S (slab, diamonds) denotes

the potential which was added to the mean field. The states shown in this plot remained topologi-

cally stable for the 9000 iterations. Note that higher values of the energy correspond to more tightly

bound and hence more favorable solutions. This figure is taken from [15].

the rod(2) bubble shape has larger binding energies anyway. This difference is very small. For that

reason the pasta matter in cold neutron stars or hot supernovae at these densities might consist of

mixed pasta phases.

Furthermore the dynamic calculations described above are cooled with static Hartree-Fock to

investigate the anisotropy of the shapes and the influence on the binding energies. Only three of the

seven dynamic shapes remain gyroidal. β 0,2
1 increases slightly but taking a shape with a = 22fm

as an example does not exceed 0.65. Comparing this shape to the ground state from the plane wave

initialized calculations shows, that the binding energies of the anisotropic G is not so much different

from the isotropic. The difference is ∆E/A = 0.02MeV. As the scalar Minkowski measures are

equal it seems, that the binding energy depends on the scalar values like volume, surface area and

mean curvature.

3. Conclusion

We have shown with the Hartree-Fock and time-dependent Hartree-Fock method, that gyroids

are competitive to slabs in nuclear pasta. G, although very involved structures with a certain hand-
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edness are built from random initial conditions of α-particles and free neutrons. These structures

are anisotropic but still gyroidal and can be identified by graphical analysis with the G network.

Furthermore we showed that the TPMS structures initialized with plane waves and a guiding

potential are metastable. The P structures have a maximum binding energy for A = 22fm. The G

structures should have a maximum binding energy at a = 27fm. Both have slightly lower binding

energies and therefore may be slightly less favored in neutron stars and supernovae.

Anisotropic dynamic structures stay anisotropic under cooling. This is not crucial for the

binding energy.
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