12 research outputs found

    Scientific challenges of convective-scale numerical weather prediction

    Get PDF
    Numerical weather prediction (NWP) models are increasing in resolution and becoming capable of explicitly representing individual convective storms. Is this increase in resolution leading to better forecasts? Unfortunately, we do not have sufficient theoretical understanding about this weather regime to make full use of these NWPs. After extensive efforts over the course of a decade, convective–scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three–dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km) with slowly–evolving semi–geostrophic dynamics and relatively long predictability on the order of a few days. Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial–differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues: the Liouville principle and Bayesian probability for probabilistic forecasts; and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows. The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided

    Hereditary interstitial lung diseases manifesting in early childhood in Japan

    Get PDF
    BACKGROUND: Genetic variations associated with interstitial lung diseases (ILD) have not been extensively studied in Japanese infants. METHODS: Forty-three infants with unexplained lung dysfunction were studied. All 43, 22, and 17 infants underwent analyses of surfactant protein (SP)-C gene (SFTPC) and ATP-binding cassette A3 gene (ABCA3), SP-B gene (SFTPB), and SP-B western blotting, respectively. Two and four underwent assessment of granulocyte macrophage colony-stimulating factor-stimulating phosphorylation of signal transducer and activator of transcription-5 (pSTAT-5) and analyses of FOXF1 gene (FOXF1), respectively. RESULTS: ILD were diagnosed clinically in nine infants: four, three, and two had interstitial pneumonitis, hereditary pulmonary alveolar proteinosis (hPAP), and alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), respectively. Genetic variations considered responsible were detected in six (67%) of the nine infants with ILD: three with hPAP (SFTPC p.Leu45Arg and p.Gln145fs, and ABCA3 p.Arg1583Trp/p.Val1495CysfsX21), two with interstitial pneumonitis (SFTPC p.Lys63Glu and p.Ser72Asn/p.Gly100Ala), and one with ACD/MPV (FOXF1 p.Leu300ArgfsX79). None showed SFTPB mutations or defects in pSTAT-5. The 17 bron-choalveolar lavage or tracheal aspirates contained enough SP-B protein. CONCLUSION: The SP-C abnormality was most prevalent, and SP-B deficiency was rare in Japanese infants with hereditary-ILD
    corecore