540 research outputs found

    Rapport de la campagne COARE 156-3 à bord du N.O Le Noroit du 6 septembre au 3 octobre 1992 de 20°S à 10°N le long du méridien 156°E et en Mer de Corail

    Get PDF
    Dans le cadre du programme international TOGA, la campagne COARE 156-3 a eu lieu du 6 septembre au 3 octobre 1992 en Mer du Corail, entre la Nouvelle-Calédonie et le détroit de Bougainville, et le long du méridien 156°E de 6°S à 9°30 N. Cette campagne a été réalisée par le groupe ORSTOM-SURTROPAC de Nouméa, Nouvelle-Calédonie et le PMEL/NOAA (Seattle). Elle s'est déroulée à bord du navire océanographique Le Noroit de la flotte océanographique nationale. Au cours de la campagne COARE 156-3, les travaux suivants ont été effectués : 77 stations à la sonde CTDO2 (0-1000 m) avec prélèvements à la rosette, quelques tirs XBT, des mesures en continu du courant absolu (O-400 m) à l'aide d'un profileur de courant à effet Doppler acoustique, des mesures automatiques de latempérature et de la salinité de surface toutes les 5 minutes, des observations météorologiques toutes les 3 heures, ainsi que des relevages, poses et vérifications des mouillages TOGA-TAO et TOPEX/POSEIDON. En outre, 12 bouées dérivantes ont été larguées. Ce rapport décrit le déroulement de la campagne ainsi que le matériel et les méthodes utilisés. Il présente également les figures correspondant aux premiers résultats. (Résumé d'auteur

    Trends in Atlantic equatorial current variability

    Get PDF
    Approximately twice-monthly expendable bathythermograph (XBT) sections between Europe and Brazil, are used to characterize trends in the equatorial geostrophic surface currents orthogonal to the sections between September, 1980 and May, 1984. Using mean temperature-salinity relationships the upper layer temperature profiles are converted to density and used to compute 0/300 db dynamic height. Applying a second derivative method, at and near the equator, geostrophic surface currents are computed along each quasimeridional XBT section and time/space series of the equatorial currents are developed using spline interpolations in both time and space. Equatorial currents are mapped as time series of dynamic height and geostrophic current

    Fitting a geometric graph to a protein-protein interaction network

    Get PDF
    Finding a good network null model for protein-protein interaction (PPI) networks is a fundamental issue. Such a model would provide insights into the interplay between network structure and biological function as well as into evolution. Also, network (graph) models are used to guide biological experiments and discover new biological features. It has been proposed that geometric random graphs are a good model for PPI networks. In a geometric random graph, nodes correspond to uniformly randomly distributed points in a metric space and edges (links) exist between pairs of nodes for which the corresponding points in the metric space are close enough according to some distance norm. Computational experiments have revealed close matches between key topological properties of PPI networks and geometric random graph models. In this work, we push the comparison further by exploiting the fact that the geometric property can be tested for directly. To this end, we develop an algorithm that takes PPI interaction data and embeds proteins into a low-dimensional Euclidean space, under the premise that connectivity information corresponds to Euclidean proximity, as in geometric-random graphs.We judge the sensitivity and specificity of the fit by computing the area under the Receiver Operator Characteristic (ROC) curve. The network embedding algorithm is based on multi-dimensional scaling, with the square root of the path length in a network playing the role of the Euclidean distance in the Euclidean space. The algorithm exploits sparsity for computational efficiency, and requires only a few sparse matrix multiplications, giving a complexity of O(N2) where N is the number of proteins.The algorithm has been verified in the sense that it successfully rediscovers the geometric structure in artificially constructed geometric networks, even when noise is added by re-wiring some links. Applying the algorithm to 19 publicly available PPI networks of various organisms indicated that: (a) geometric effects are present and (b) two-dimensional Euclidean space is generally as effective as higher dimensional Euclidean space for explaining the connectivity. Testing on a high-confidence yeast data set produced a very strong indication of geometric structure (area under the ROC curve of 0.89), with this network being essentially indistinguishable from a noisy geometric network. Overall, the results add support to the hypothesis that PPI networks have a geometric structure

    Fitting a geometric graph to a protein-protein interaction network

    Get PDF
    Finding a good network null model for protein-protein interaction (PPI) networks is a fundamental issue. Such a model would provide insights into the interplay between network structure and biological function as well as into evolution. Also, network (graph) models are used to guide biological experiments and discover new biological features. It has been proposed that geometric random graphs are a good model for PPI networks. In a geometric random graph, nodes correspond to uniformly randomly distributed points in a metric space and edges (links) exist between pairs of nodes for which the corresponding points in the metric space are close enough according to some distance norm. Computational experiments have revealed close matches between key topological properties of PPI networks and geometric random graph models. In this work, we push the comparison further by exploiting the fact that the geometric property can be tested for directly. To this end, we develop an algorithm that takes PPI interaction data and embeds proteins into a low-dimensional Euclidean space, under the premise that connectivity information corresponds to Euclidean proximity, as in geometric-random graphs.We judge the sensitivity and specificity of the fit by computing the area under the Receiver Operator Characteristic (ROC) curve. The network embedding algorithm is based on multi-dimensional scaling, with the square root of the path length in a network playing the role of the Euclidean distance in the Euclidean space. The algorithm exploits sparsity for computational efficiency, and requires only a few sparse matrix multiplications, giving a complexity of O(N2) where N is the number of proteins.The algorithm has been verified in the sense that it successfully rediscovers the geometric structure in artificially constructed geometric networks, even when noise is added by re-wiring some links. Applying the algorithm to 19 publicly available PPI networks of various organisms indicated that: (a) geometric effects are present and (b) two-dimensional Euclidean space is generally as effective as higher dimensional Euclidean space for explaining the connectivity. Testing on a high-confidence yeast data set produced a very strong indication of geometric structure (area under the ROC curve of 0.89), with this network being essentially indistinguishable from a noisy geometric network. Overall, the results add support to the hypothesis that PPI networks have a geometric structure

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure

    Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins

    Get PDF
    Motivation: Protein–protein interactions (PPIs) are critical for virtually every biological function. Recently, researchers suggested to use supervised learning for the task of classifying pairs of proteins as interacting or not. However, its performance is largely restricted by the availability of truly interacting proteins (labeled). Meanwhile, there exists a considerable amount of protein pairs where an association appears between two partners, but not enough experimental evidence to support it as a direct interaction (partially labeled)

    ToppGene Suite for gene list enrichment analysis and candidate gene prioritization

    Get PDF
    ToppGene Suite (http://toppgene.cchmc.org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis. A P-value of each annotation of a test gene is derived by random sampling of the whole genome. The protein–protein interaction network (PPIN)-based disease candidate gene prioritization uses social and Web networks analysis algorithms (extended versions of the PageRank and HITS algorithms, and the K-Step Markov method). We demonstrate the utility of ToppGene Suite using 20 recently reported GWAS-based gene–disease associations (including novel disease genes) representing five diseases. ToppGene ranked 19 of 20 (95%) candidate genes within the top 20%, while ToppNet ranked 12 of 16 (75%) candidate genes among the top 20%

    DASMIweb: online integration, analysis and assessment of distributed protein interaction data

    Get PDF
    In recent years, we have witnessed a substantial increase of the amount of available protein interaction data. However, most data are currently not readily accessible to the biologist at a single site, but scattered over multiple online repositories. Therefore, we have developed the DASMIweb server that affords the integration, analysis and qualitative assessment of distributed sources of interaction data in a dynamic fashion. Since DASMIweb allows for querying many different resources of protein and domain interactions simultaneously, it serves as an important starting point for interactome studies and assists the user in finding publicly accessible interaction data with minimal effort. The pool of queried resources is fully configurable and supports the inclusion of own interaction data or confidence scores. In particular, DASMIweb integrates confidence measures like functional similarity scores to assess individual interactions. The retrieved results can be exported in different file formats like MITAB or SIF. DASMIweb is freely available at http://www.dasmiweb.de

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
    corecore