534 research outputs found

    Vascular Communications of the Hand in Patients Being Considered for Transradial Coronary Angiography Is the Allen’s Test Accurate?

    Get PDF
    ObjectivesThe purpose of this study was to assess the accuracy of the Allen’s test (AT) in predicting hand ischemia in patients undergoing transradial coronary angiography.BackgroundPatients with poor vascular communications between the radial artery (RA) and ulnar artery (UA), as indicated by an abnormal AT, are usually excluded from transradial coronary angiography to avoid ischemic hand complications.MethodsOver a four-month period, patients undergoing coronary angiography were screened for AT time. Circulation in the RA, UA, principal artery of the thumb (PAT), and thumb capillary lactate were measured before and after 30 min of RA occlusion.ResultsFifty-five patients were studied (20 normal, 15 intermediate, 20 abnormal). Three patients with an abnormal AT were excluded, owing to absence of detectible flow in the distal UA. Patients with an abnormal AT were all men, had a larger RA (3.4 vs. 2.8 mm; p <0.001), and smaller UA (1.9 vs. 2.5 mm; p <0.001), compared with patients with a normal AT. After 30 min of RA occlusion in patients with abnormal AT, blood flow to the PAT improved (3.2 to 7.7 cm/s; p <0.001) yet remained reduced relative to patients with normal AT (7.7 vs. 21.4 cm/s; p <0.001. Thumb capillary lactate was elevated in patients with an abnormal AT (2.0 vs. 1.5 mmol/l; p = 0.019).ConclusionsAfter 30 min of RA occlusion, patients with an abnormal AT showed significantly reduced blood flow to the thumb and increased thumb capillary lactate (compared with patients with a normal AT) suggestive of ischemia. Transradial cardiac catheterization should not be performed in patients with an abnormal AT

    Ginkgo biloba for tinnitus

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the effects of Ginkgo biloba for tinnitus in adults and children

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    Get PDF
    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed

    Ablative therapy for people with localised prostate cancer : a systematic review and economic evaluation

    Get PDF
    The research reported in this issue of the journal was funded by the HTA programme as project number 10/136/01. The contractual start date was in April 2012. The draft report began editorial review in October 2013 and was accepted for publication in April 2014. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report. Acknowledgements We thank l the people recruited from the local UCAN for providing valuable consumer insight and advice through their participation as members of the project focus group: - Mark Emberton (Professor of Interventional Oncology), Damian Greene (consultant urologist), Axel Heidenreich (Professor and Director of Department of Urology), Christoph von Klot (specialist in brachytherapy), Roger Kockelbergh (BAUS chairman and Clinical Director of Urology) and Axel Merserburger (Deputy Clinical Director of Urology and Urologic Oncology) for providing their clinical expertise as members of the project advisory group - Edgar Paez (consultant urologist) and Gill Lawrence (Head of Radiotherapy Physics) for providing a list of staff time by grade and specialty involved in EBRT - Debbie Bennett (Radiotherapy Service Manager) for providing estimates for the expected number of uses for EBRT - Ian Pedley (clinical director/clinical oncologist) and Gill Lawrence for providing a list of all resource inputs relevant to brachytherapy - Steve Locks (Consultant Clinical Scientist in Radiotherapy) for providing a list of reusable equipment and consumables used during brachytherapy, along with their unit costs - Sue Asterling (urology research nurse) and Mark Kelly (Acting Divisional General Manager – Theatres) for providing a list of all resource inputs relevant to cryotherapy - Lara Kemp for providing secretarial support. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health Directorates.Peer reviewedPublisher PD

    A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Integration of a Scanning Electron Microscope with a Transition-Edge Sensor Spectrometer

    Full text link
    X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but is difficult to implement due to competing requirements on X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. Compact X-ray nanotomography tools operated in standard analysis laboratories exist, but are limited by X-ray optics and destructive sample preparation techniques. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while changing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot in a metal target, while the TES spectrometer isolates target photons with high signal-to-noise. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enable nanoscale, element-specific X-ray imaging in a compact footprint. The proof-of-concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in a Cu-SiO2 integrated circuit, and a path towards finer resolution and enhanced imaging capabilities is discussed.Comment: The following article has been submitted to Physical Review Applie

    INVESTIGATE-I (INVasive Evaluation before Surgical Treatment of Incontinence Gives Added Therapeutic Effect?): study protocol for a mixed methods study to assess the feasibility of a future randomised controlled trial of the clinical utility of invasive urodynamic testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urinary incontinence is an important health problem to the individual sufferer and to health services. Stress and stress predominant mixed urinary incontinence are increasingly managed by surgery due to advances in surgical techniques. Despite the lack of evidence for its clinical utility, most clinicians undertake invasive urodynamic testing (IUT) to confirm a functional diagnosis of urodynamic stress incontinence before offering surgery for this condition. IUT is expensive, embarrassing and uncomfortable for women and carries a small risk. Recent systematic reviews have confirmed the lack of high quality evidence of effectiveness.</p> <p>The aim of this pilot study is to test the feasibility of a future definitive randomised control trial that would address whether IUT alters treatment decisions and treatment outcome in these women and would test its clinical and cost effectiveness.</p> <p>Methods/design</p> <p>This is a mixed methods pragmatic multicentre feasibility pilot study with four components:-</p> <p>(a) A multicentre, external pilot randomised trial comparing basic clinical assessment with non-invasive tests and IUT. The outcome measures are rates of recruitment, randomisation and data completion. Data will be used to estimate sample size necessary for the definitive trial.</p> <p>(b) Qualitative interviews of a purposively sampled sub-set of women eligible for the pilot trial will explore willingness to participate, be randomised and their overall trial experience.</p> <p>(c) A national survey of clinicians to determine their views of IUT in this context, the main outcome being their willingness to randomise patients into the definitive trial.</p> <p>(d) Qualitative interviews of a purposively sampled group of these clinicians will explore whether and how they use IUT to inform their decisions.</p> <p>Discussion</p> <p>The pilot trial will provide evidence of feasibility and acceptability and therefore inform the decision whether to proceed to the definitive trial. Results will inform the design and conduct of the definitive trial and ensure its effectiveness in achieving its research aim.</p> <p>Trial registration number</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN71327395">ISRCTN71327395</a> assigned 7<sup>th </sup>June 2010.</p

    Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls

    Get PDF
    Sixty beef bulls with a body weight (BW) of 314.79 16.2 kg were used to evaluate the effects of zilpaterol hydrochloride (ZH) and zinc methionine (ZM) on growth performance and carcass characteristics. The experimental design was a randomized complete block, with a factorial 22 arrangement of treatments (ZH: 0 and 0.15 mg kg 1 BW; ZM: 0 and 80 mg kg 1 dry matter). The ZH increased (PB0.05) the final BW, average daily gain, feed conversion, carcass yield and longissimus dorsi area. Bulls fed ZH plus ZM had less (PB0.01) backfat thickness and intramuscular fat (IMF) compared with those fed ZH or ZM alone. The ZH increased (PB0.02) the meat crude protein content and cooking loss. It is therefore concluded that ZH increases growth performance, carcass yield, longissimus dorsi area, and meat crude protein. The interaction of ZM and ZH did not present additional advantages. The reason for the reduction in backfat thickness and IMF by ZH plus ZM is unclear, and implies that our knowledge of b-agonistic adrenergic substances and their interactions with minerals is incomplete

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    corecore