249 research outputs found

    Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1−/Δ7 Mice

    Get PDF
    textabstractAlthough it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-week bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20 weeks, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (< 10 μm) mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum - but not with L. casei and B. breve - prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly

    D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data

    Full text link
    Importance: Whether and under which conditions D-cycloserine (DCS) augments the effects of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders is unclear. Objective: To clarify whether DCS is superior to placebo in augmenting the effects of cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders and to evaluate whether antidepressants interact with DCS and the effect of potential moderating variables. Data Sources: PubMed, EMBASE, and PsycINFO were searched from inception to February 10, 2016. Reference lists of previous reviews and meta-analyses and reports of randomized clinical trials were also checked. Study Selection: Studies were eligible for inclusion if they were (1) double-blind randomized clinical trials of DCS as an augmentation strategy for exposure-based cognitive behavior therapy and (2) conducted in humans diagnosed as having specific phobia, social anxiety disorder, panic disorder with or without agoraphobia, obsessive-compulsive disorder, or posttraumatic stress disorder. Data Extraction and Synthesis: Raw data were obtained from the authors and quality controlled. Data were ranked to ensure a consistent metric across studies (score range, 0-100). We used a 3-level multilevel model nesting repeated measures of outcomes within participants, who were nested within studies. Results: Individual participant data were obtained for 21 of 22 eligible trials, representing 1047 of 1073 eligible participants. When controlling for antidepressant use, participants receiving DCS showed greater improvement from pretreatment to posttreatment (mean difference, -3.62; 95% CI, -0.81 to -6.43; P = .01; d = -0.25) but not from pretreatment to midtreatment (mean difference, -1.66; 95% CI, -4.92 to 1.60; P = .32; d = -0.14) or from pretreatment to follow-up (mean difference, -2.98, 95% CI, -5.99 to 0.03; P = .05; d = -0.19). Additional analyses showed that participants assigned to DCS were associated with lower symptom severity than those assigned to placebo at posttreatment and at follow-up. Antidepressants did not moderate the effects of DCS. None of the prespecified patient-level or study-level moderators was associated with outcomes. Conclusions and Relevance: D-cycloserine is associated with a small augmentation effect on exposure-based therapy. This effect is not moderated by the concurrent use of antidepressants. Further research is needed to identify patient and/or therapy characteristics associated with DCS response.2018-05-0

    Carbon Dioxide Capture and Storage (CCS) - Liability for Non-permanence under the UNFCCC

    Full text link
    Prior to CoP 10, our discussion paper ?On the Integration of Carbon Capture and Storage into the International Climate Regime? argued that carbon capture and storage (CCS) was similar to carbon sequestration in the area of Land Use, Land-Use Change and Forestry (LULUCF). This was criticized by several readers who observed that treating CCS as a removal activity (sink) would not be compatible with the UNFCCC sink definition, what we already had mentioned in the paper. The present paper is based on the UNFCCC definition and analyses how CCS could be integrated into the climate regime. As CO2 may re-enter the atmosphere after injection into geological reservoirs, the question of long-term liability has to be considered. Apart from this aspect, additional complexities arise from the fact that CO2 capture and storage can be carried out in two different countries. A classification of CCS cross-border activities shows that not all cases with non-Annex I participation fall under the CDM. Furthermore, we elaborate on the problem that seepage of CO2 from reservoirs located in non-Annex I countries – under current rules – would not be subtracted from the emission budget of any country. For these cases, solutions guaranteeing liability for possible non-permanence of CCS are proposed

    Low dose cisplatin weekly versus high dose cisplatin every three weeks in primary chemoradiotherapy in head and neck cancer patients with low skeletal muscle mass: The CISLOW-study protocol

    Get PDF
    Chemoradiotherapy with cisplatin in a triweekly regimen of 100 mg/m2 body surface area, is used to treat locally advanced head and neck squamous cell carcinoma (HNSCC) with curative intent. Cisplatin dose limiting toxicity (CDLT) occurs often and impedes obtaining the planned cumulative cisplatin dose. A cumulative cisplatin dose of 200 mg/m2 or more is warranted for better survival and locoregional control. Patients with a low skeletal muscle mass (SMM) have a three-fold higher risk of developing CDLT than patients with a normal SMM. SMM can be assessed through measurements on routinely performed diagnostic head and neck CT- or MRI-scans. A weekly regimen of 40 mg/m2 body surface area cisplatin is proposed as a less toxic schedule, which possibly decreases the risk of developing CDLT and enables reaching a higher cumulative cisplatin dose. The aim of this multicenter randomized clinical trial (NL76533.041.21, registered in the Netherlands Trial Register) is to identify whether a regimen of weekly cisplatin increases compliance to the planned chemotherapy scheme in HNSCC patients with low SMM. The primary outcome is the difference in compliance rate, defined as absence of CDLT, between low SMM patients receiving either the weekly or triweekly regimen. Secondary outcomes consist of toxicities, the cumulative cisplatin dose, time to recurrence, incidence of recurrence at two years of follow-up, location of recurrence, 2-year overall, disease free and disease specific survival, quality of life, patient's experiences, and cost-effectiveness

    Life-prolonging treatment restrictions and outcomes in patients with cancer and COVID-19:an update from the Dutch Oncology COVID-19 Consortium

    Get PDF
    AIM OF THE STUDY: The coronavirus disease 2019 (COVID-19) pandemic significantly impacted cancer care. In this study, clinical patient characteristics related to COVID-19 outcomes and advanced care planning, in terms of non-oncological treatment restrictions (e.g. do-not-resuscitate codes), were studied in patients with cancer and COVID-19. METHODS: The Dutch Oncology COVID-19 Consortium registry was launched in March 2020 in 45 hospitals in the Netherlands, primarily to identify risk factors of a severe COVID-19 outcome in patients with cancer. Here, an updated analysis of the registry was performed, and treatment restrictions (e.g. do-not-intubate codes) were studied in relation to COVID-19 outcomes in patients with cancer. Oncological treatment restrictions were not taken into account. RESULTS: Between 27th March 2020 and 4th February 2021, 1360 patients with cancer and COVID-19 were registered. Follow-up data of 830 patients could be validated for this analysis. Overall, 230 of 830 (27.7%) patients died of COVID-19, and 60% of the remaining 600 patients with resolved COVID-19 were admitted to the hospital. Patients with haematological malignancies or lung cancer had a higher risk of a fatal outcome than other solid tumours. No correlation between anticancer therapies and the risk of a fatal COVID-19 outcome was found. In terms of end-of-life communication, 50% of all patients had restrictions regarding life-prolonging treatment (e.g. do-not-intubate codes). Most identified patients with treatment restrictions had risk factors associated with fatal COVID-19 outcome. CONCLUSION: There was no evidence of a negative impact of anticancer therapies on COVID-19 outcomes. Timely end-of-life communication as part of advanced care planning could save patients from prolonged suffering and decrease burden in intensive care units. Early discussion of treatment restrictions should therefore be part of routine oncological care, especially during the COVID-19 pandemic

    Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    Get PDF
    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology

    Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment

    Get PDF
    Purpose: Patients with rare cancers (incidence less than 6 cases per 100,000 persons per year) commonly have less treatment opportunities and are understudied at the level of genomic targets. We hypothesized that patients with rare cancer benefit from approved anticancer drugs outside their label similar to common cancers. Experimental Design: In the Drug Rediscovery Protocol (DRUP), patients with therapy-refractory metastatic cancers harboring an actionable molecular profile are matched to FDA/European Medicines Agency–approved targeted therapy or immunotherapy. Patients are enrolled in parallel cohorts based on the histologic tumor type, molecular profile and study drug. Primary endpoint is clinical benefit (complete response, partial response, stable disease ≥ 16 weeks). Results: Of 1,145 submitted cases, 500 patients, including 164 patients with rare cancers, started one of the 25 available drugs and were evaluable for treatment outcome. The overall clinical benefit rate was 33% in both the rare cancer and nonrare cancer subgroup. Inactivating alterations of CDKN2A and activating BRAF aberrations were overrepresented in patients with rare cancer compared with nonrare cancers, resulting in more matches to CDK4/6 inhibitors (14% vs. 4%; P ≤ 0.001) or BRAF inhibitors (9% vs. 1%; P ≤ 0.001). Patients with rare cancer treated with small-molecule inhibitors targeting BRAF experienced higher rates of clinical benefit (75%) than the nonrare cancer subgroup. Conclusions: Comprehensive molecular testing in patients with rare cancers may identify treatment opportunities and clinical benefit similar to patients with common cancers. Our findings highlight the importance of access to broad molecular diagnostics to ensure equal treatment opportunities for all patients with cancer

    Metabolite transport and associated sugar signalling systems underpinning source/ sink interactions

    Get PDF
    Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilization. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement
    • …
    corecore