19 research outputs found

    Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    Get PDF
    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration

    Commercial Implementation of Ultrasonic Velocity Imaging Methods via Cooperative Agreement Between NASA Lewis Research Center and Sonix, Inc.

    Get PDF
    This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available

    New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    Get PDF
    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Drug education in victorian schools (DEVS): the study protocol for a harm reduction focused school drug education trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study seeks to extend earlier Australian school drug education research by developing and measuring the effectiveness of a comprehensive, evidence-based, harm reduction focused school drug education program for junior secondary students aged 13 to 15 years. The intervention draws on the recent literature as to the common elements in effective school curriculum. It seeks to incorporate the social influence of parents through home activities. It also emphasises the use of appropriate pedagogy in the delivery of classroom lessons.</p> <p>Methods/Design</p> <p>A cluster randomised school drug education trial will be conducted with 1746 junior high school students in 21 Victorian secondary schools over a period of three years. Both the schools and students have actively consented to participate in the study. The education program comprises ten lessons in year eight (13-14 year olds) and eight in year nine (14-15 year olds) that address issues around the use of alcohol, tobacco, cannabis and other illicit drugs. Control students will receive the drug education normally provided in their schools. Students will be tested at baseline, at the end of each intervention year and also at the end of year ten. A self completion questionnaire will be used to collect information on knowledge, patterns and context of use, attitudes and harms experienced in relation to alcohol, tobacco, cannabis and other illicit drug use. Multi-level modelling will be the method of analysis because it can best accommodate hierarchically structured data. All analyses will be conducted on an Intent-to-Treat basis. In addition, focus groups will be conducted with teachers and students in five of the 14 intervention schools, subsequent to delivery of the year eight and nine programs. This will provide qualitative data about the effectiveness of the lessons and the relevance of the materials.</p> <p>Discussion</p> <p>The benefits of this drug education study derive both from the knowledge gained by trialling an optimum combination of innovative, harm reduction approaches with a large, student sample, and the resultant product. The research will provide better understanding of what benefits can be achieved by harm reduction education. It will also produce an intervention, dealing with both licit and illicit drug use that has been thoroughly evaluated in terms of its efficacy, and informed by teacher and student feedback. This makes available to schools a comprehensive drug education package with prevention characteristics and useability that are well understood.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12612000079842.aspx">ACTRN12612000079842</a></p
    corecore