1,015 research outputs found
Bounds and dynamics for empirical game theoretic analysis
This paper provides several theoretical results for empirical game theory. Specifically, we introduce bounds for empirical game theoretical analysis of complex multi-agent interactions. In doing so we provide insights in the empirical meta game showing that a Nash equilibrium of the estimated meta-game is an approximate Nash equilibrium of the true underlying meta-game. We investigate and show how many data samples are required to obtain a close enough approximation of the underlying game. Additionally, we extend the evolutionary dynamics analysis of meta-games using heuristic payoff tables (HPTs) to asymmetric games. The state-of-the-art has only considered evolutionary dynamics of symmetric HPTs in which agents have access to the same strategy sets and the payoff structure is symmetric, implying that agents are interchangeable. Finally, we carry out an empirical illustration of the generalised method in several domains, illustrating the theory and evolutionary dynamics of several versions of the AlphaGo algorithm (symmetric), the dynamics of the Colonel Blotto game played by human players on Facebook (symmetric), the dynamics of several teams of players in the capture the flag game (symmetric), and an example of a meta-game in Leduc Poker (asymmetric), generated by the policy-space response oracle multi-agent learning algorithm
Probabilities from Entanglement, Born's Rule from Envariance
I show how probabilities arise in quantum physics by exploring implications
of {\it environment - assisted invariance} or {\it envariance}, a recently
discovered symmetry exhibited by entangled quantum systems. Envariance of
perfectly entangled ``Bell-like'' states can be used to rigorously justify
complete ignorance of the observer about the outcome of any measurement on
either of the members of the entangled pair. For more general states,
envariance leads to Born's rule, for the outcomes
associated with Schmidt states. Probabilities derived in this manner are an
objective reflection of the underlying state of the system -- they represent
experimentally verifiable symmetries, and not just a subjective ``state of
knowledge'' of the observer. Envariance - based approach is compared with and
found superior to pre-quantum definitions of probability including the {\it
standard definition} based on the `principle of indifference' due to Laplace,
and the {\it relative frequency approach} advocated by von Mises. Implications
of envariance for the interpretation of quantum theory go beyond the derivation
of Born's rule: Envariance is enough to establish dynamical independence of
preferred branches of the evolving state vector of the composite system, and,
thus, to arrive at the {\it environment - induced superselection (einselection)
of pointer states}, that was usually derived by an appeal to decoherence.
Envariant origin of Born's rule for probabilities sheds a new light on the
relation between ignorance (and hence, information) and the nature of quantum
states.Comment: Figure and an appendix (Born's rule for continuous spectra) added.
Presentation improved. (Comments still welcome...
Implications of the Muon Anomalous Magnetic Moment for Supersymmetry
We re-examine the bounds on supersymmetric particle masses in light of the
E821 data on the muon anomalous magnetic moment. We confirm, extend and
supersede previous bounds. In particular we find (at one sigma) no lower limit
on tan(beta) or upper limit on the chargino mass implied by the data at
present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at
least one sparticle must be lighter than 345 to 440 GeV. However, the E821
central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV.
For tan(beta) < 10, the data indicates a high probability for direct discovery
of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde
Relational Quantum Mechanics
I suggest that the common unease with taking quantum mechanics as a
fundamental description of nature (the "measurement problem") could derive from
the use of an incorrect notion, as the unease with the Lorentz transformations
before Einstein derived from the notion of observer-independent time. I suggest
that this incorrect notion is the notion of observer-independent state of a
system (or observer-independent values of physical quantities). I reformulate
the problem of the "interpretation of quantum mechanics" as the problem of
deriving the formalism from a few simple physical postulates. I consider a
reformulation of quantum mechanics in terms of information theory. All systems
are assumed to be equivalent, there is no observer-observed distinction, and
the theory describes only the information that systems have about each other;
nevertheless, the theory is complete.Comment: Substantially revised version. LaTeX fil
1965: Abilene Christian College Bible Lectures - Full Text
LIFT UP YOUR EYES”
Being the Abilene Christian College Annual Bible Lectures 1965
Price: $3.95
Published by
ABILENE CHRISTIAN COLLEGE STUDENTS EXCHANGE
ACC Station Abilene. Texa
Your Trash Is Someone's Treasure The Politics of Value at a Michigan Landfill
This article discusses scavenging and dumping as alternative approaches to deriving value from rubbish at a large Michigan landfill. Both practices are attuned to the indeterminacy and power of abandoned things, but in different ways. Whereas scavenging relies on acquiring familiarity with an object by getting to know its particular qualities, landfilling and other forms of mass disposal make discards fungible and manipulable by stripping them of their former identities. By way of examining the different ways in which people become invested in the politics of value at the landfill, whether as part of expressions of gender and class or for personal enjoyment, different comportments toward materiality are revealed to have underlying social and moral implications. In particular, it is argued that different approaches to the evaluation of rubbish involve competing understandings of human and material potential
Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature – The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11)
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC ) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases ( ICD-11 ). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC .
The International Society for Nomenclature of Paediatric and Congenital Heart Disease ( ISNPCHD ), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature . This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.
The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC , as IPCCC continues to evolve
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV
The t t-bar production cross section (sigma[t t-bar]) is measured in
proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS
experiment, corresponding to an integrated luminosity of 2.3 inverse
femtobarns. The measurement is performed in events with two leptons (electrons
or muons) in the final state, at least two jets identified as jets originating
from b quarks, and the presence of an imbalance in transverse momentum. The
measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/-
2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction
of the standard model.Comment: Replaced with published version. Included journal reference and DO
- …