1,047 research outputs found

    Characterisation, coverage, and orientation of functionalised graphene using sum-frequency generation spectroscopy.

    Get PDF
    We report the unambiguous detection of phenyl groups covalently attached to functionalised graphene using non-linear spectroscopy. Sum-frequency generation was employed to probe graphene on a gold surface after chemical functionalisation using a benzene diazonium salt. We observe a distinct resonance at 3064 cm-1 which can clearly be assigned to an aromatic C-H stretch by comparison with a self-assembled monolayer on a gold substrate formed from benzenethiol. Not only does sum-frequency generation spectroscopy allow one to characterise functionalised graphene with higher sensitivity and much better specificity than many other spectroscopic techniques, but it also opens up the possibility to assess the coverage of graphene with functional groups, and to determine their orientation relative to the graphene surface

    Fast and flexible selection with a single switch

    Get PDF
    Selection methods that require only a single-switch input, such as a button click or blink, are potentially useful for individuals with motor impairments, mobile technology users, and individuals wishing to transmit information securely. We present a single-switch selection method, "Nomon," that is general and efficient. Existing single-switch selection methods require selectable options to be arranged in ways that limit potential applications. By contrast, traditional operating systems, web browsers, and free-form applications (such as drawing) place options at arbitrary points on the screen. Nomon, however, has the flexibility to select any point on a screen. Nomon adapts automatically to an individual's clicking ability; it allows a person who clicks precisely to make a selection quickly and allows a person who clicks imprecisely more time to make a selection without error. Nomon reaps gains in information rate by allowing the specification of beliefs (priors) about option selection probabilities and by avoiding tree-based selection schemes in favor of direct (posterior) inference. We have developed both a Nomon-based writing application and a drawing application. To evaluate Nomon's performance, we compared the writing application with a popular existing method for single-switch writing (row-column scanning). Novice users wrote 35% faster with the Nomon interface than with the scanning interface. An experienced user (author TB, with > 10 hours practice) wrote at speeds of 9.3 words per minute with Nomon, using 1.2 clicks per character and making no errors in the final text.Comment: 14 pages, 5 figures, 1 table, presented at NIPS 2009 Mini-symposi

    Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease

    Get PDF
    Human β-amyloid (Aβ) is believed to be one of the main components of Alzheimer’s disease, so reduction of Aβ is considered a key therapeutic target. Using Agrobacterium-mediated nuclear transformation, we generated transgenic tomatoes for Aβ with tandem repeats. Integration of the human Aβ gene into the tomato genome and its transcription were detected by PCR and Northern blot, respectively. Expression of the Aβ protein was confirmed by western blot and ELISA, and then the transgenic tomato line expressing the highest protein level was selected for vaccination. Mice immunized orally with total soluble extracts from the transgenic tomato plants elicited an immune response after receiving a booster. The results indicate that tomato plants may provide a useful system for the production of human Aβ antigen

    Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    Get PDF
    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus

    Hele-Shaw beach creation by breaking waves: a mathematics-inspired experiment

    Get PDF
    Fundamentals of nonlinear wave-particle interactions are studied experimentally in a Hele-Shaw configuration with wave breaking and a dynamic bed. To design this configuration, we determine, mathematically, the gap width which allows inertial flows to survive the viscous damping due to the side walls. Damped wave sloshing experiments compared with simulations confirm that width-averaged potential-flow models with linear momentum damping are adequately capturing the large scale nonlinear wave motion. Subsequently, we show that the four types of wave breaking observed at real-world beaches also emerge on Hele-Shaw laboratory beaches, albeit in idealized forms. Finally, an experimental parameter study is undertaken to quantify the formation of quasi-steady beach morphologies due to nonlinear, breaking waves: berm or dune, beach and bar formation are all classified. Our research reveals that the Hele-Shaw beach configuration allows a wealth of experimental and modelling extensions, including benchmarking of forecast models used in the coastal engineering practice, especially for shingle beaches

    Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Get PDF
    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page
    corecore