23 research outputs found

    A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    Get PDF
    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation.publishedVersio

    Cardiovascular and Cerebrovascular Complications With COVID-19

    No full text
    The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 has affected the health of people across the globe. Cardiovascular diseases (CVDs) have a significant relationship with COVID-19, both as a risk factor and prognostic indicator, and as a complication of the disease itself. In addition to predisposing to CVD complications, the ongoing pandemic has severely affected the delivery of timely and appropriate care for cardiovascular conditions resulting in increased mortality. The etiology behind the cardiac injury associated with severe acute respiratory syndrome coronavirus-2 is likely varied, including coronary artery disease, microvascular thrombosis, myocarditis, and stress cardiomyopathy. Further large-scale investigations are needed to better determine the underlying mechanism of myocardial infarction and other cardiac injury in COVID-19 patients and to determine the incidence of each type of cardiac injury in this patient population. Telemedicine and remote monitoring technologies can play an important role in optimizing outcomes in patients with established CVD. In this article, we summarize the various impacts that COVID-19 has on the cardiovascular system, including myocardial infarction, myocarditis, stress cardiomyopathy, thrombosis, and stroke
    corecore