49 research outputs found

    Iron Speciation in Fram Strait and Over the Northeast Greenland Shelf: An Inter-Comparison Study of Voltammetric Methods

    Get PDF
    Competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE-AdCSV) is a widely used technique to determine dissolved iron (Fe) speciation in seawater, and involves competition for Fe of a known added ligand (AL) with natural organic ligands. Three different ALs were used, 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-napthol (NN). The total ligand concentrations ([Lt]) and conditional stability constants (log Kâ€ČFe'L) obtained using the different ALs are compared. The comparison was done on seawater samples from Fram Strait and northeast Greenland shelf region, including the Norske Trough, Nioghalvfjerdsfjorden (79N) Glacier front and Westwind Trough. Data interpretation using a one-ligand model resulted in [Lt]SA (2.72 ± 0.99 nM eq Fe) > [Lt]TAC (1.77 ± 0.57 nM eq Fe) > [Lt]NN (1.57 ± 0.58 nM eq Fe); with the mean of log Kâ€ČFe'L being the highest for TAC (log â€ČKFe'L(TAC) = 12.8 ± 0.5), followed by SA (log Kâ€ČFe'L(SA) = 10.9 ± 0.4) and NN (log Kâ€ČFe'L(NN) = 10.1 ± 0.6). These differences are only partly explained by the detection windows employed, and are probably due to uncertainties propagated from the calibration and the heterogeneity of the natural organic ligands. An almost constant ratio of [Lt]TAC/[Lt]SA = 0.5 - 0.6 was obtained in samples over the shelf, potentially related to contributions of humic acid-type ligands. In contrast, in Fram Strait [Lt]TAC/[Lt]SA varied considerably from 0.6 to 1, indicating the influence of other ligand types, which seemed to be detected to a different extent by the TAC and SA methods. Our results show that even though the SA, TAC and NN methods have different detection windows, the results of the one ligand model captured a similar trend in [Lt], increasing from Fram Strait to the Norske Trough to the Westwind Trough. Application of a two-ligand model confirms a previous suggestion that in Polar Surface Water and in water masses over the shelf, two ligand groups existed, a relatively strong and relatively weak ligand group. The relatively weak ligand group contributed less to the total complexation capacity, hence it could only keep part of Fe released from the 79N Glacier in the dissolved phase.This study was supported by Royal Netherland Institute for Sea Research. Collection and analysis of samples were further supported by GEOMAR Helmholtz Centre for Ocean Research (the Helmholtz Association and the German Research Foundation (DFG Award Number AC 217/1-1 to EA). IA was supported by a doctoral scholarship from Indonesia Endowment Fund for Education (LPDP), and KZ was supported by a scholarship from the China Scholarship Council

    The role of the Dotson Ice Shelf and Circumpolar Deep Water as driver and source of dissolved and particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean

    Get PDF
    Coastal areas around Antarctica such as the Amundsen Sea are important sources of trace metals and biological hotspots, but are also experiencing the effects of climate change, including the rapid thinning of ice sheets. In the central Amundsen Sea Polynya (ASP), both bio-essential dissolved Fe (DFe) and dissolved Mn (DMn) were found to be depleted at the surface, indicating substantial biological uptake and/or precipitation. Close to the Dotson Ice Shelf (DIS) there were elevated surface concentrations of DMn (>3 nM) but surprisingly not for DFe (100 m depth). We compared different uptake ratios, underlining that uptake ratio estimates do not necessarily capture natural variability and it is likely better to use a range of values. In the future, climate change may increase the heat flux of mCDW and thereby the melting of the DIS. This will most likely cause an increased input of Fe and Mn into the ASP, which may fuel increased levels of primary productivity in the ASP

    Arctic – Atlantic exchange of the dissolved micronutrients Iron, Manganese, Cobalt, Nickel, Copper and Zinc with a focus on Fram Strait

    Get PDF
    The Arctic Ocean is considered a source of micronutrients to the Nordic Seas and the North Atlantic Ocean through the gateway of Fram Strait. However, there is a paucity of trace element data from across the Arctic Ocean gateways, and so it remains unclear how Arctic and North Atlantic exchange shapes micronutrient availability in the two ocean basins. In 2015 and 2016, GEOTRACES cruises sampled the Barents Sea Opening (GN04, 2015) and Fram Strait (GN05, 2016) for dissolved iron (dFe), manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu) and zinc (dZn). Together with the most recent synopsis of Arctic-Atlantic volume fluxes, the observed trace element distributions suggest that Fram Strait is the most important gateway for Arctic-Atlantic dissolved micronutrient exchange as a consequence of Intermediate and Deep Water transport. Combining fluxes from Fram Strait and the Barents Sea Opening with estimates for Davis Strait (GN02, 2015) suggests an annual net southward flux of 2.7 ± 2.4 Gg·a-1 dFe, 0.3 ± 0.3 Gg·a-1 dCo, 15.0 ± 12.5 Gg·a-1 dNi and 14.2 ± 6.9 Gg·a-1 dCu from the Arctic towards the North Atlantic Ocean. Arctic-Atlantic exchange of dMn and dZn were more balanced, with a net southbound flux of 2.8 ± 4.7 Gg·a-1 dMn and a net northbound flux of 3.0 ± 7.3 Gg·a-1 dZn. Our results suggest that ongoing changes to shelf inputs and sea ice dynamics in the Arctic, especially in Siberian shelf regions, affect micronutrient availability in Fram Strait and the high latitude North Atlantic Ocean

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Heme b quotas are low in Southern Ocean phytoplankton

    Get PDF
    Heme is the iron-containing prosthetic group of hemoproteins, and is thus required for photosynthesis, respiration and nitrate reduction in marine phytoplankton. Here we report concentrations of heme b in Southern Ocean phytoplankton and contrast our findings with those in coastal species. The concentration of particulate heme b (pmol l-1) observed at the end of the exponential growth phase was related to the concentration of dissolved iron in the culture media. Small Southern Ocean phytoplankton species (<6 ”m in diameter) had heme b quotas <1 ”mol mol-1 carbon, the lowest yet reported for marine phytoplankton. Heme b was also depleted in these species with respect to chlorophyll a. We calculated the amount of carbon accumulated per mole of heme b per second in our cultures (heme growth efficiency, HGE) and found that small Southern Ocean species can maintain growth rates, even while heme b content is reduced. Small Southern Ocean phytoplankton can thus produce more particulate carbon than larger Southern Ocean or small coastal species at equivalent iron concentrations. Combining primary productivity and heme b concentrations reported for the open ocean, we found that HGE in natural populations was within the range of our laboratory culture results. HGE was also observed to be higher at open ocean stations characterized by low iron concentrations. Our results suggest that low heme b quotas do not necessarily result in reduced growth and that marine phytoplankton can optimize iron use by manipulating the intracellular hemoprotein pool

    Contrasting behaviour of trace metals in the Scheldt estuary in 1978 compared to recent years

    Get PDF
    Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual’ Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.

    The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary

    No full text
    In the estuary of the river Scheldt, where an oxygen gradient exists in addition to the salinity gradient, redox processes will be of major importance for trace metal mobilisation. In this study, the influence of salinity and pH on the redox processes of dissolved Zn and Cd sulphides is investigated together with the effects on the ratio of the dissolved Zn and Cd concentrations. The speciation of these metals is calculated with the chemical equilibrium programme MINEQL + .Zn sulphides are oxidised at lower oxygen concentrations than Cd sulphides, due to lower stability constants, causing a sudden increase or peak in the dissolved Zn/Cd ratio. The formation of dissolved Cd chloride complexes when oxidation occurs at high salinities (S = 15) increases the mobility of Cd, causing a decrease in the Zn/Cd peak of the total dissolved concentrations. The peak is three to four times smaller at S = 15 than when oxidation occurs at S = 2. The simple model calculations compare very well with field data. The Scheldt estuary is suitable to illustrate these calculations. In the 1970s, the anoxic part of the estuary reached S = 15-20, but since the early 1980s it has dropped to S = 2-10. Historic data on metals in the estuary from 1978, 1987 and the 1990s were used to compare with the equilibrium calculations. The increase of the dissolved Zn/Cd peak at low salinity as a consequence, of the decreasing anoxic region is confirmed well by the data. The good agreement between model calculations and field data is a proof of the extreme importance of redox processes for the solubility of Zn and Cd sulphides in the estuary. © 2001 Elsevier Science B.V. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Efficiency of carbon removal per added iron in ocean iron fertilization

    Get PDF
    The major response to ocean iron fertilization is by large diatoms, which at Fe-replete ambient seawater show an optimum C:Fe elemental ratio of ~23 000 and a higher ratio of ~160 000 or more under Fe-limited conditions. The efficiency of CO2 drawdown during the several weeks of artificial fertilization experiments with concomitant observations is in the range of 100 < (CO2:Fe) < 1000 and is unknown in direction (positive or negative) and magnitude in the period after observations. The efficiency of biogenic carbon export into deeper water layers ranges from ~650 < (C:Fe)export < ~25 000 for reported export depths in the 100 to 250 m range. Variations in ocean initial conditions and variable weather during an experiment cause this range of ~2 orders of magnitude. Approximately 75% of Fe added in fertilization experiments is lost very rapidly. Hence the above efficiencies can be multiplied 4-fold, to ~2600 < (C:Fe)export < ~100 000, for the sake of comparison with natural fertilization with Fe-organic complexes, which stabilize Fe in solution. Quantification of the Fe source of natural fertilization is difficult, leading to an export efficiency in the ~2400 < (C:Fe)export < ~800 000 range. Due to severe under-sampling, the existing datasets of artificial experiments and natural fertilizations may allow a wider range of alternative assessments than reported here.
    corecore