667 research outputs found

    Exploring the Unknown: Selected Documents in the History of the US Civilian Space Program

    Get PDF
    One of the most important developments of the twentieth century has been the movement of humanity into space with machines and people. The underpinnings of that movement -why it took the shape it did; which individuals and organizations were involved; what factors drove a particular choice of scientific objectives and technologies to be used; and the political, economic, managerial, and international contexts in which the events of the space age unfolded- are all important ingredients of this epoch transition from an earthbound to spacefaring people. This desire to understand the development of spaceflight in the United States sparked this documentary history series. 'Exploring the Unknown' is a multi-volume series containing a selection of key documents in history of the U.S. civil space program. This current volume, Volume III, focusing on the use of space for practical applications, prints 112 key documents on the history of satellite communications, remote sensing of earth, and space as an investment in economic growth, edited for ease of use. Each is introduced by a headnote providing context, bibliographical information, and background information necessary to understanding the document

    Characterization of Glycated Proteins by \u3csup\u3e13\u3c/sup\u3eC NMR Spectroscopy

    Get PDF
    13C NMR spectroscopy has been used to characterize Amadori (ketoamine) adducts formed by reaction of [2-13C]glucose with free amino groups of protein. The spectra of glycated proteins were acquired in phosphate buffer at pH 7.4 and were interpreted by reference to the spectra of model compounds, N alpha-formyl-N epsilon-fructose-lysine and glycated poly-L-lysine (GlcPLL). The anomeric carbon region of the spectrum (approximately 90-105 ppm) of glycated cytochrome c was superimposable on that of N alpha-formyl-N epsilon-fructose-lysine, and contained three peaks characteristic of the alpha- and beta-furanose and beta-pyranose anomers of Amadori adducts to peripheral lysine residues on protein (pK alpha approximately 10.5). The spectrum of GlcPLL yielded six anomeric carbon resonances; the second set of three was displaced about 2 ppm to lower shielding of the first and was assigned to the Amadori adduct at the alpha-amino terminus (pK alpha approximately 7.5). The spectrum of glycated RNase was similar to that of GlcPLL, but contained a third set of three signals attributable to modification of active site lysine 41 (pK alpha approximately 8.8). The assignments for RNase were confirmed by analysis of spectra taken at pH 4 and under denaturing conditions. The spectrum of glycated hemoglobin was comparable to that of GlcPLL, and distinct resonances could be assigned to Amadori adducts at amino-terminal valine and intrachain N epsilon-lysine residues. Chemical analyses were performed to measure the relative extent of alpha- and epsilon-amino group modification in the glycated macromolecules, and the results were compared with estimates based on integration of the NMR spectra

    \u3csup\u3e13\u3c/sup\u3eC NMR Investigation of Nonenzymatic Glucosylation of Protein

    Get PDF
    Nonenzymatic glucosylation of protein is initiated by the reversible condensation of glucose in its open chain form with the amino groups on the protein. The initial product is an aldimine (Schiff base) which cyclizes to the glycosylamine derivative. The aldimine can undergo a slow Amadori rearrangement to yield the relatively stable ketoamine adduct which is structurally analogous to fructose. 13C NMR has been used to characterize these early products of nonenzymatic glucosylation, using RNase A as a model protein. C-1 of the beta-pyranose anomer of the glycosylamine was identified at 88.8 ppm in the spectrum of RNase glucosylated approximately 1:1 with D-[1-13C]glucose. C-1 of the Amadori product was also apparent in this spectrum, resonating as a pair of intense peaks at 52.7 and 53.1 ppm. The anomeric (C-2) resonances of the Amadori adduct were seen in the spectrum of RNase glucosylated approximately 1:1 with [U-13C]glucose. This spectrum was interpreted by comparison to the spectra of reference compounds: D-fructose, fructose-glycine, N alpha-formyl-N epsilon-fructose-lysine, and glucosylated poly-L-lysine. In the protein spectrum, the most intense of the C-2 resonances was that of the beta-fructopyranose anomer at 95.8 ppm. The alpha- and beta-fructofuranose anomers were also observed at 101.7 and 99.2 ppm, respectively. One unidentified signal in the anomeric region was observed in the spectra of poly-L-lysine and RNase, both glucosylated with [U-13C]glucose; no comparable resonances were observed in the spectra of the model compounds

    The evolution of interdependence in a four-way mealybug symbiosis

    Get PDF
    Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrientpoor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provide these nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in the cytoplasm of Tremblaya. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared to their closest non-endosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved co-dependencies with each other, Tremblaya, and their insect host

    Skepticism about Reasoning

    Get PDF
    Less discussed than Hume’s skepticism about what grounds there could be for projecting empirical hypotheses is his concern with a skeptical regress that he thought threatened to extinguish any belief when we reflect that our reasoning is not perfect. The root of the problem is the fact that a reflection about our reasoning is itself a piece of reasoning. If each reflection is negative and undermining, does that not give us a diminution of our original belief to nothing? It requires much attention to detail, we argue, to determine whether or not there is a skeptical problem in this neighborhood. For consider, if we subsequently doubt a doubt we had about our reasoning, should that not restore some confidence in our original belief? We would then have instead an alternating sequence of pieces of skeptical reasoning that cancel each others’ effects on our justification in the original proposition, at least to some degree. We will argue that the outcome of the sequence of reflections Hume is imagining depends on information about a given case that is not known a priori. We conclude this from the fact that under three precise, explanatory, and viable contemporary reconstructions of what this kind of reasoning about reasoning could be like and how it has the potential to affect our original beliefs, a belief-extinguishing regress is not automatic or necessary. The outcome of the sequence of reflections depends on further information whose character we will explain

    Pseudofinder: Detection of Pseudogenes in Prokaryotic Genomes

    Get PDF
    Prokaryotic genomes are usually densely packed with intact and functional genes. However, in certain contexts, such as after recent ecological shifts or extreme population bottlenecks, broken and nonfunctional gene fragments can quickly accumulate and form a substantial fraction of the genome. Identification of these broken genes, called pseudogenes, is a critical step for understanding the evolutionary forces acting upon, and the functional potential encoded within, prokaryotic genomes. Here, we present Pseudofinder, an open-source software dedicated to pseudogene identification and analysis in bacterial and archaeal genomes. We demonstrate that Pseudofinder’s multi-pronged, reference-based approach can detect a wide variety of pseudogenes, including those that are highly degraded and typically missed by gene-calling pipelines, as well newly formed pseudogenes containing only one or a few inactivating mutations. Additionally, Pseudofinder can detect genes that lack inactivating substitutions but experiencing relaxed selection. Implementation of Pseudofinder in annotation pipelines will allow more precise estimations of the functional potential of sequenced microbes, while also generating new hypotheses related to the evolutionary dynamics of bacterial and archaeal genomes

    Life in a Harsh Environment: The Effects of Age, Sex, Reproductive Condition, and Season on Hair Cortisol Concentration in a Wild Non-Human Primate

    Get PDF
    Hair cortisol concentration (HCC) provides a long-term retrospective measure of hypothalamic–pituitary–adrenal axis activity, and is increasingly used to assess the life history, health and ecology of wild mammals. Given that sex, age, season and pregnancy influence HCC, and that it may indicate ongoing stress, we examined HCC in common marmosets (Callithrix jacchus) naturally inhabiting a hot and dry semi-desert like habitat, Caatinga, in northeastern Brazil. We trapped, measured, weighed, marked and collected shaved hair from the back of the neck of 61 wild marmosets during the wet and dry seasons. Using enzyme immunoassay, we found that HCC was higher in the dry season compared with the wet season among all age/sex classes. Females had significantly higher HCC than males, juveniles had higher HCC than adults, and reproductively active adult females and non-pregnant/non lactating adult females did not differ in HCC. There were no interaction effects of sex, age, group, or season on HCC. The magnitude of the effect of this extremely hot and dry environment (average yearly rainfall was only 271 mm) on HCC in common marmosets is difficult to ascertain as these animals are also experiencing a variety of other stressors. However, the elevated HCC seen in common marmosets during the 5–8 month dry season, suggests these primates face an extended period of heat, water and possibly nutritional stress, which appears to result in a high rate of juvenile mortality

    Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    Get PDF
    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.

    A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response

    Get PDF
    Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.National Institutes of Health (U.S.) (New Innovator Award)Smith Family FoundationDamon Runyon Cancer Research FoundationSearle Scholars ProgramNational Institutes of Health (U.S.) (1R01CA119176-01
    corecore