13C NMR spectroscopy has been used to characterize Amadori (ketoamine) adducts formed by reaction of [2-13C]glucose with free amino groups of protein. The spectra of glycated proteins were acquired in phosphate buffer at pH 7.4 and were interpreted by reference to the spectra of model compounds, N alpha-formyl-N epsilon-fructose-lysine and glycated poly-L-lysine (GlcPLL). The anomeric carbon region of the spectrum (approximately 90-105 ppm) of glycated cytochrome c was superimposable on that of N alpha-formyl-N epsilon-fructose-lysine, and contained three peaks characteristic of the alpha- and beta-furanose and beta-pyranose anomers of Amadori adducts to peripheral lysine residues on protein (pK alpha approximately 10.5). The spectrum of GlcPLL yielded six anomeric carbon resonances; the second set of three was displaced about 2 ppm to lower shielding of the first and was assigned to the Amadori adduct at the alpha-amino terminus (pK alpha approximately 7.5). The spectrum of glycated RNase was similar to that of GlcPLL, but contained a third set of three signals attributable to modification of active site lysine 41 (pK alpha approximately 8.8). The assignments for RNase were confirmed by analysis of spectra taken at pH 4 and under denaturing conditions. The spectrum of glycated hemoglobin was comparable to that of GlcPLL, and distinct resonances could be assigned to Amadori adducts at amino-terminal valine and intrachain N epsilon-lysine residues. Chemical analyses were performed to measure the relative extent of alpha- and epsilon-amino group modification in the glycated macromolecules, and the results were compared with estimates based on integration of the NMR spectra