168 research outputs found

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    Trait-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates

    Get PDF
    Early theorists (Freud and Darwin) speculated that extremely shy children, or those with anxious temperament, were likely to have anxiety problems as adults. More recent studies demonstrate that these children have heightened responses to potentially threatening situations reacting with intense defensive responses that are characterized by behavioral inhibition (BI) (inhibited motor behavior and decreased vocalizations) and physiological arousal. Confirming the earlier impressions, data now demonstrate that children with this disposition are at increased risk to develop anxiety, depression, and comorbid substance abuse. Additional key features of anxious temperament are that it appears at a young age, it is a stable characteristic of individuals, and even in non-threatening environments it is associated with increased psychic anxiety and somatic tension. To understand the neural underpinnings of anxious temperament, we performed imaging studies with 18-fluoro-deoxyglucose (FDG) high-resolution Positron Emission Tomography (PET) in young rhesus monkeys. Rhesus monkeys were used because they provide a well validated model of anxious temperament for studies that cannot be performed in human children. Imaging the same animal in stressful and secure contexts, we examined the relation between regional metabolic brain activity and a trait-like measure of anxious temperament that encompasses measures of BI and pituitary-adrenal reactivity. Regardless of context, results demonstrated a trait-like pattern of brain activity (amygdala, bed nucleus of stria terminalis, hippocampus, and periaqueductal gray) that is predictive of individual phenotypic differences. Importantly, individuals with extreme anxious temperament also displayed increased activity of this circuit when assessed in the security of their home environment. These findings suggest that increased activity of this circuit early in life mediates the childhood temperamental risk to develop anxiety and depression. In addition, the findings provide an explanation for why individuals with anxious temperament have difficulty relaxing in environments that others perceive as non-stressful

    Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD

    Get PDF
    Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression

    Variance and Autocorrelation of the Spontaneous Slow Brain Activity

    Get PDF
    Slow (<0.1 Hz) oscillatory activity in the human brain, as measured by functional magnetic imaging, has been used to identify neural networks and their dysfunction in specific brain diseases. Its intrinsic properties may also be useful to investigate brain functions. We investigated the two functional maps: variance and first order autocorrelation coefficient (r1). These two maps had distinct spatial distributions and the values were significantly different among the subdivisions of the precuneus and posterior cingulate cortex that were identified in functional connectivity (FC) studies. The results reinforce the functional segregation of these subdivisions and indicate that the intrinsic properties of the slow brain activity have physiological relevance. Further, we propose a sample size (degree of freedom) correction when assessing the statistical significance of FC strength with r1 values, which enables a better understanding of the network changes related to various brain diseases

    Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function

    Get PDF
    Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m2), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3×10−7) and FNDC1 (p-value = 3.0×10−7) for UACR, and KCNQ1 with eGFR (p = 3.6×10−6). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish

    Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD

    Get PDF
    Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression

    Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks

    Get PDF
    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome
    corecore