71 research outputs found

    Letters Rogatory: Current Problems Facing International Judicial Assistance

    Get PDF

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Reproduction in the Sheep and Goat

    No full text

    Contrasting resting-state fMRI abnormalities from sickle and non-sickle anemia

    No full text
    Sickle cell disease (SCD) is a chronic blood disorder that is often associated with acute and chronic cerebrovascular complications, including strokes and impaired cognition. Using functional resting state magnetic resonance images, we performed whole-brain analysis of the amplitude of low frequency fluctuations (ALFF), to detect areas of spontaneous blood oxygenation level dependent signal across brain regions. We compared the ALFF of 20 SCD patients to that observed in 19 healthy, age and ethnicity-matched, control subjects. Significant differences were found in several brain regions, including the insula, precuneus, anterior cingulate cortex and medial superior frontal gyrus. To identify the ALFF differences resulting from anemia alone, we also compared the ALFF of SCD patients to that observed in 12 patients having comparable hemoglobin levels but lacking sickle hemoglobin. Increased ALFF in the orbitofrontal cortex and the anterior and posterior cingulate cortex and decreased ALFF in the frontal pole, cerebellum and medial superior frontal gyrus persisted after accounting for the effect of anemia. The presence of white matter hyperintensities was associated with depressed frontal and medial superior frontal gyri activity in the SCD subjects. Decreased ALFF in the frontal lobe was correlated with decreased verbal fluency and cognitive flexibility. These findings may lead to a better understanding of the pathophysiology of SCD
    • 

    corecore