33 research outputs found

    Foreland Magmatism during the Arabia–Eurasia Collision: Pliocene–Quaternary Activity of the Karacadağ Volcanic Complex, SW Turkey

    Get PDF
    Pliocene to Quaternary magmatism in the Karacadağ Volcanic Complex in SE Turkey occurred in the foreland region of the Arabia–Eurasia collision and can be divided into two phases. The earlier Karacadağ phase formed a north–south-trending volcanic ridge that erupted three groups of lavas. The same range of mantle sources contributed to the younger Ovabağ phase lavas, which were erupted from monogenetic cones to the east of the Karacadağ fissure. As at several other intraplate localities across the northern Arabian Plate this magmatism represents mixtures of melt from shallow, isotopically enriched mantle and from deeper, more depleted mantle. The deep source is similar to the depleted mantle invoked for other northern Arabian intraplate volcanic fields but at Karacadağ this source contained phlogopite. This source could be located in the shallow convecting mantle or may represent a metasomatic layer in the base of the lithosphere. There is no evidence for a contribution from the Afar mantle plume, as has been proposed elsewhere in northern Arabia. Melting during the Karacadağ and Ovabağ phases could have resulted from a combination of upwelling beneath weak or thinned lithosphere and restricted local extension of that weakened lithosphere as it collided with Eurasia. Tension associated with the collision focused magma of the Karacadağ phase into the elongate shield volcano of Mt. Karacadağ. The northern end of the fissure accommodated more extensive differentiation of magma, with isolated cases of crustal contamination, consistent with greater stress in the lithosphere closest to the collision. Most magma batches of the Karacadağ and Ovabağ phases differentiated by fractional crystallization at ∼5 MPa, near the boundary between the upper and lower crust. Magma batches dominated by melt from garnet lherzolite show evidence for restricted amounts of differentiation at ∼22·5 MPa, which is close to the base of the lithospheric mantle

    Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5- 38.0°S): Constraints on Mantle Wedge and Input Compositions

    Get PDF
    Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5-38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile Trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like δ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6 and backarc = 5.0-5.4 per mil) and lack of correlation between δ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab

    The Ariel payload electrical and electronic architecture: a summary of the current design and implementation status

    Get PDF
    Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems

    Ariel: Enabling planetary science across light-years

    Get PDF

    Trace element and Sr-Nd isotope geochemistry of the alkali basalts observed along the Yumurtalik Fault (Adana) in southern Turkey

    No full text
    Young volcanics erupted since late Pliocene as a result of lithospheric extension within the transtensional zones along the NE-SW trending letf-lateral Yumurtalik fault zone that mark the boundary between the African and the Anatolian plates in southern Turkey. These volcanics are characterized by alkali olivine basalts. The REE patterns exhibit a strong fractionation characterized by (La/Yb)(N) ratio between 22 and 6. Primitive mantle normalized incompatible trace element patterns exhibit close similarity to OIB. Ratios of some selected incompatible trace elements (i.e., Ce/Y=1.4-3.8, Zr/Nb=3.9-6.5, La/Ba=0.05-0.1, La/Nb=0.6-0.8, Zr/Ba=0.4-0.8) are also well comparable to those of ocean island basalts. The 87Sr/86Sr ratios show low values (between 0.703081 to 0.703920), whereas the 143Nd/144Nd ratios show high values (ranging from 0.512601 to 0.512986), suggesting an OIB signature. All the evidence suggest that the intracontinental volcanics in this region were derived from an asthenospheric mantle following the fractures of the continental lithosphere that resulted from the left lateral strike-slip fault system bounding the African-Anatolian plates since Late Pliocene in southern Turkey
    corecore