396 research outputs found

    Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

    Get PDF
    A vibronic-exciton model is applied to investigate the mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom recently proposed as the origin of the long-lived oscillations in 2D spectra of the FMO complex [Christensson et al. J. Phys. Chem. B 116 (2012) 7449]. We reduce the problem to a model BChl dimer to elucidate the role of resonance coupling, site energies, nuclear mode and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing the two coupled BChls 3 and 4 of the FMO complex, the initial amplitude of the vibronic-exciton and vibrational coherences are enhanced by up to 15 and 5 times, respectively, compared to the vibrational coherences in the isolated monomer. This maximum initial amplitude enhancement occurs when there is a resonance between the electronic energy gap and the frequency of the vibrational mode. The bandwidth of this enhancement is about 100 cm-1 for both mechanisms. The excitonic mixing of electronic and vibrational DOF leads to additional dephasing relative to the vibrational coherences. We evaluate the dephasing dynamics by solving the quantum master equation in Markovian approximation and observe a strong dependence of the life-time enhancement on the mode frequency. Long-lived vibronic-exciton coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic resonance. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that both type have a similar magnitude at long time for the present model. The ability to distinguish between vibronic-exciton and ground-state vibrational coherences in the general case of molecular aggregate is discussed.Comment: 16 pages, 6 figure

    Non-invasive mechanical joint loading as an alternative model for osteoarthritic pain

    Get PDF
    OBJECTIVE: Mechanisms responsible for osteoarthritic pain remain poorly understood and current analgesic therapies are often insufficient. We have characterized and pharmacologically tested the pain phenotype of a non-invasive mechanical joint loading (MJL) model of osteoarthritis thus providing an alternative murine model for osteoarthritic pain. METHODS: The right knees of male mice (12-week-old, C57BL/6) were loaded at 9N or 11N (40 cycles, three times/week for two weeks). Behavioural measurements of limb disuse, mechanical and thermal hypersensitivity were acquired before MJL and monitored for six weeks post-loading. The severity of articular cartilage lesions was determined post-mortem with the OARSI grading scheme. Furthermore, 9N-loaded mice were treated for four weeks with diclofenac (10mg/kg), gabapentin (100mg/kg) or anti-Nerve Growth Factor (3mg/kg). RESULTS: Mechanical hypersensitivity and weight-bearing worsened significantly in 9N- and 11N-loaded mice two weeks post-loading compared to baseline values and non-loaded controls. Maximum OA scores of ipsilateral knees confirmed increased cartilage lesions in 9N- (2.8±0.2) and 11N-loaded (5.3±0.3) mice compared to non-loaded controls (1.0±0.0). Gabapentin and diclofenac restored pain behaviours to baseline values after two weeks of daily treatment, with gabapentin being more effective than diclofenac. A single injection of anti-NGF alleviated nociception two days after treatment and remained effective for two weeks with a second dose inducing stronger and more prolonged analgesia. CONCLUSION: Our results show that MJL induces OA lesions and a robust pain phenotype that can be reversed using analgesics known to alleviate OA pain in patients. This establishes the use of MJL as an alternative model for osteoarthritic pain

    Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation.

    No full text
    Bone tissue is densely innervated, and there is increasing evidence for a neural control of bone metabolism. Semaphorin-3A is a very important regulator of neuronal targeting in the peripheral nervous system as well as in angiogenesis, and knockout of the Semaphorin-3A gene induces abnormal bone and cartilage development. We analyzed the spatial and temporal expression patterns of Semaphorin-3A signaling molecules during endochondral ossification, in parallel with the establishment of innervation. We show that osteoblasts and chondrocytes differentiated in vitro express most members of the Semaphorin-3A signaling system (Semaphorin-3A, Neuropilin-1, and Plexins-A1 and -A2). In vitro, osteoclasts express most receptor chains but not the ligand. In situ, these molecules are all expressed in the periosteum and by resting, prehypertrophic and hypertrophic chondrocytes in ossification centers before the onset of neurovascular invasion. They are detected later in osteoblasts and also osteoclasts, with differences in intensity and regional distribution. Semaphorin-3A and Neuropilin-1 are also expressed in the bone marrow. Plexin-A3 is not expressed by bone cell lineages in vitro. It is detected early in the periosteum and hypertrophic chondrocytes. After the onset of ossification, this chain is restricted to a network of cell processes in close vicinity to the cells lining the trabeculae, similar to the pattern observed for neural markers at the same stages. After birth, while the density of innervation decreases, Plexin-A3 is strongly expressed by blood vessels on the ossification front. In conclusion, Semaphorin-3A signaling is present in bone and seems to precede or coincide at the temporal but also spatial level with the invasion of bone by blood vessels and nerve fibers. Expression patterns suggest Plexin-A3/Neuropilin-1 as a candidate receptor in target cells for the regulation of bone innervation by Semaphorin-3A

    Testosterone Prevents Cutaneous Ischemia and Necrosis in Males Through Complementary Estrogenic and Androgenic Actions

    Get PDF
    OBJECTIVE: Chronic nonhealing wounds are a substantial medical concern and are associated with morbidity and mortality; thus, new treatment strategies are required. The first step toward personalized/precision medicine in this field is probably in taking sex differences into account. Impaired wound healing is augmented by ischemia, and we previously demonstrated that 17ÎČ-estradiol exerts a major preventive effect against ischemia-induced skin flap necrosis in female mice. However, the equivalent effects of testosterone in male mice have not yet been reported. We then investigated the role of steroid hormones in male mice using a skin flap ischemia model. APPROACH AND RESULTS: Castrated male mice developed skin necrosis after ischemia, whereas intact or castrated males treated with testosterone were equally protected. Testosterone can (1) activate the estrogen receptor after its aromatization into 17ÎČ-estradiol or (2) be reduced into dihydrotestosterone, a nonaromatizable androgen that activates the androgen receptor. We found that dihydrotestosterone protected castrated wild-type mice by promoting skin revascularization, probably through a direct action on resistance arteries, as evidenced using a complementary model of flow-mediated outward remodeling. 17ÎČ-estradiol treatment of castrated male mice also strongly protected them from ischemic necrosis through the activation of estrogen receptor-α by increasing skin revascularization and skin survival. Remarkably, 17ÎČ-estradiol improved skin survival with a greater efficiency than dihydrotestosterone. CONCLUSIONS: Testosterone provides males with a strong protection against cutaneous necrosis and acts through both its estrogenic and androgenic derivatives, which have complementary effects on skin survival and revascularization

    The 4 per 1000 initiative.

    Get PDF
    Soil organic matter is at the nexus of global challenges: food security, climate change adaptation and mitigation, soil security. The 4 per 1000 initiative, launched at the Climate COP21 within the Lima-Paris Action Agenda proposes to increase soil organic carbon (SOC) stocks to simultaneously address all these challenges. It directly addresses three sustainable development goals: SDG2 ?no hunger?, SDG13 ?Climate action?, and SDG15 ?Life on land? and indirectly concerns several others. The initiative targets agricultural soils in priority, which are often the most degraded soils and because of the high expected benefits in terms of soil fertility and hence of productivity. A range of agricultural practices are available that allow to increase SOC stocks while ensuring a resilient, productive and environmentally friendly agriculture, so that a large-scale deployment can be aimed at. Here, we review and discuss the main limits and criticisms addressed to the 4 per 1000 initiative

    Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy

    Get PDF
    In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm–1 vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model

    The moisture response of soil heterotrophic respiration: Interaction with soil properties

    Get PDF
    Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamic

    Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils

    Get PDF
    ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. KĂ€tterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. BarrĂ©. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin
    • 

    corecore