research

Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

Abstract

A vibronic-exciton model is applied to investigate the mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom recently proposed as the origin of the long-lived oscillations in 2D spectra of the FMO complex [Christensson et al. J. Phys. Chem. B 116 (2012) 7449]. We reduce the problem to a model BChl dimer to elucidate the role of resonance coupling, site energies, nuclear mode and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing the two coupled BChls 3 and 4 of the FMO complex, the initial amplitude of the vibronic-exciton and vibrational coherences are enhanced by up to 15 and 5 times, respectively, compared to the vibrational coherences in the isolated monomer. This maximum initial amplitude enhancement occurs when there is a resonance between the electronic energy gap and the frequency of the vibrational mode. The bandwidth of this enhancement is about 100 cm-1 for both mechanisms. The excitonic mixing of electronic and vibrational DOF leads to additional dephasing relative to the vibrational coherences. We evaluate the dephasing dynamics by solving the quantum master equation in Markovian approximation and observe a strong dependence of the life-time enhancement on the mode frequency. Long-lived vibronic-exciton coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic resonance. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that both type have a similar magnitude at long time for the present model. The ability to distinguish between vibronic-exciton and ground-state vibrational coherences in the general case of molecular aggregate is discussed.Comment: 16 pages, 6 figure

    Similar works