12 research outputs found

    Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering : advances and prospects

    Get PDF
    High engineering efficiencies are required for industrial strain development. Due to its user-friendliness and its stringency, CRISPR-Cas-based technologies have strongly increased genome engineering efficiencies in bacteria. This has enabled more rapid metabolic engineering of both the model host Escherichia coli and non-model organisms like Clostridia, Bacilli, Streptomycetes and cyanobacteria, opening new possibilities to use these organisms as improved cell factories. The discovery of novel Cas9-like systems from diverse microbial environments will extend the repertoire of applications and broaden the range of organisms in which it can be used to create novel production hosts. This review analyses the current status of prokaryotic metabolic engineering towards the production of biotechnologically relevant products, based on the exploitation of different CRISPR-related DNA/RNA endonuclease variants

    Next Generation Prokaryotic Engineering : The CRISPR-Cas Toolkit

    No full text
    The increasing demand for environmentally friendly production processes of green chemicals and fuels has stimulated research in microbial metabolic engineering. CRISPR-Cas-based tools for genome editing and expression control have enabled fast, easy, and accurate strain development for established production platform organisms, such as Escherichia coli and Saccharomyces cerevisiae. However, the growing interest in alternative production hosts, for which genome editing options are generally limited, requires further developing such engineering tools. In this review, we discuss established and emerging CRISPR-Cas-based tools for genome editing and transcription control of model and non-model prokaryotes, and we analyse the possibilities for further improvement and expansion of these tools for next generation prokaryotic engineering. SpyCas9 has recently been established as an efficient counterselection system in combination with homologous recombination-based strategies for bacterial genome editing.Besides the traditionally used SpyCas9, other CRISPR-Cas systems (both heterologous and native) are currently being evaluated in bacteria for their editing potential.Catalytically inactive variants of CRISPR-Cas systems are used for transcriptional control in bacteria with great potential for fundamental research and applications.</p

    Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9

    No full text
    Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes Cas9 (spCas9)-based genome editing to a moderate thermophile, i.e., Bacillus smithii, including a gene deletion, gene knockout via insertion of premature stop codons, and gene insertion. We show that spCas9 is inactive in vivo above 42 °C, and we employ the wide temperature growth range of B. smithii as an induction system for spCas9 expression. Homologous recombination with plasmid-borne editing templates is performed at 45-55 °C, when spCas9 is inactive. Subsequent transfer to 37 °C allows for counterselection through production of active spCas9, which introduces lethal double-stranded DNA breaks to the nonedited cells. The developed method takes 4 days with 90, 100, and 20% efficiencies for gene deletion, knockout, and insertion, respectively. The major advantage of our system is the limited requirement for genetic parts: only one plasmid, one selectable marker, and a promoter are needed, and the promoter does not need to be inducible or well-characterized. Hence, it can be easily applied for genome editing purposes in both mesophilic and thermophilic nonmodel organisms with a limited genetic toolbox and ability to grow at, or tolerate, temperatures of 37 and at or above 42 °C.</p

    Competitive Exclusion Is a Major Bioprotective Mechanism of Lactobacilli against Fungal Spoilage in Fermented Milk Products

    No full text
    A prominent feature of lactic acid bacteria (LAB) is their ability to inhibit growth of spoilage organisms in food, but hitherto research efforts to establish the mechanisms underlying bioactivity focused on the production of antimicrobial compounds by LAB. We show in this study, that competitive exclusion, i.e, competition for a limited resource by different organisms, is a major mechanism of fungal growth inhibition by lactobacilli in fermented dairy products. The depletion of the essential trace element manganese by two Lactobacillus species was uncovered as the main mechanism for growth inhibition of dairy spoilage yeast and molds. A manganese transporter (MntH1), representing one of the highest expressed gene products in both lactobacilli, facilitates the exhaustive manganese scavenging. Expression of the mntH1 gene was found to be strain-dependent, affected by species co-culturing and growth phase. Further, deletion of the mntH1 gene in one of the strains resulted in loss of bioactivity, proving this gene to be important for manganese depletion. The presence of a mntH gene displayed a distinct phylogenetic pattern within the Lactobacillus genus. Moreover, assaying the bioprotective ability in fermented milk of selected lactobacilli from ten major phylogenetic groups identified a correlation between the presence of mntH and bioprotective activity. Thus, manganese scavenging emerges as a common trait within the Lactobacillus genus, but differences in expression result in some strains showing more bioprotective effect than others.In summary, competitive exclusion through ion depletion is herein reported a novel mechanism in LAB to delay growth of spoilage contaminants in dairy products.IMPORTANCE In societies that have food choices, conscious consumers demand natural solutions to keep their food healthy and fresh during storage, simultaneously reducing food waste. The use of "good bacteria" to protect food against spoilage organisms has a long successful history, even though the molecular mechanisms are not fully understood. In this study, we show that depletion of free manganese is a major bioprotective mechanism of lactobacilli in dairy products. High manganese uptake and intracellular storage provides a link to the distinct non-enzymatic manganese catalyzed oxidative stress defense mechanism, previously described for certain lactobacilli. The evaluation of representative Lactobacillus species in our study identifies multiple relevant species groups for fungal growth inhibition via manganese depletion. Hence, through the natural mechanism of nutrient depletion, the use of dedicated bioprotective lactobacilli constitutes an attractive alternative to artificial preservation

    Characterizing a thermostable Cas9 for bacterial genome editing and silencing

    No full text
    CRISPR-Cas9-based genome engineering tools have revolutionized fundamental research and biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic nature of the established Cas9 systems does not allow for applications that require enhanced stability, including engineering at elevated temperatures. Here we identify and characterize ThermoCas9 from the thermophilic bacterium Geobacillus thermodenitrificans T12. We show that in vitro ThermoCas9 is active between 20 and 70 °C, has stringent PAM-preference at lower temperatures, tolerates fewer spacer-protospacer mismatches than SpCas9 and its activity at elevated temperatures depends on the sgRNA-structure. We develop ThermoCas9-based engineering tools for gene deletion and transcriptional silencing at 55 °C in Bacillus smithii and for gene deletion at 37 °C in Pseudomonas putida. Altogether, our findings provide fundamental insights into a thermophilic CRISPR-Cas family member and establish a Cas9-based bacterial genome editing and silencing tool with a broad temperature range
    corecore