768 research outputs found

    The Role of Pain and Disability Changes After Physiotherapy Treatment on Global Perception of Improvement in Patients with Chronic Low Back Pain

    Get PDF
    Background: The effectiveness of physiotherapy in patients with chronic low back pain is usually measured through changes in pain and disability domains. However, recent research has suggested that these two domains are not sufficient to capture all the physiotherapy benefits when patients' perspective is considered. Objective: The aim of this study was to investigate the role of pain and disability changes in explaining the global perception of improvement in patients with chronic low back pain undergoing physiotherapy. Design: Prospective cohort study. Methods: The study was conducted on183 patients who were referred to physiotherapy treatment due to low back pain lasting more than 12 weeks. Sociodemographic and clinical characteristics were measured at baseline, together with pain intensity and disability. Eight (post-intervention) and twelve weeks later, global perception of improvement was measured together with pain and disability. The Pearson correlation coefficient and linear regression models were used for analyses. Results: Of the 183 participants included, 144 completed the 12-weeks follow-up. Significant and moderate correlation was found between pain and disability changes and the global perception of improvement after intervention and at the 12-weeks follow-up. Pain and disability changes explained 20.7%-36.3% of the variance in the global perception of improvement. Conclusions: Pain and disability changes are related and contributed to explaining a partial proportion of variance in the global perception of improvement. The findings suggest that these domains are not sufficient to explain and measure all of the benefits of physiotherapy when patients' global perception of improvement is considered.info:eu-repo/semantics/publishedVersio

    Leishmania amazonensis Promastigotes Present Two Distinct Modes of Nucleus and Kinetoplast Segregation during Cell Cycle

    Get PDF
    Here, we show the morphological events associated with organelle segregation and their timing in the cell cycle of a reference strain of Leishmania (L.) amazonensis promastigotes, the main causative agent of Tegumentary leishmaniasis in the Americas. We show evidences that during the cell cycle, L. amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation, which occur in different temporal order in different proportions of cells. We used DAPI-staining and EdU-labeling to monitor the segregation of DNA-containing organelles and DNA replication in wild-type parasites. The emergence of a new flagellum was observed using a specific monoclonal antibody. The results show that L. amazonensis cell cycle division is peculiar, with 65% of the dividing cells duplicating the kinetoplast before the nucleus, and the remaining 35% doing the opposite or duplicating both organelles concomitantly. In both cases, the new flagellum appeared during S to G2 phase in 1N1K cells and thus before the segregation of both DNA-containing organelles; however, we could not determine the exact timing of flagellar synthesis. Most of these results were confirmed by the synchronization of parasites using hydroxyurea. Altogether, our data show that during the cell cycle of L. amazonensis promastigotes, similarly to L. donovani, the segregation of nucleus and kinetoplast do not follow a specific order, especially when compared to other trypanosomatids, reinforcing the idea that this characteristic seems to be species-specific and may represent differences in cellular biology among members of the Leishmania genus

    Kahler Moduli Inflation Revisited

    Get PDF
    We perform a detailed numerical analysis of inflationary solutions in Kahler moduli of type IIB flux compactifications. We show that there are inflationary solutions even when all the fields play an important role in the overall shape of the scalar potential. Moreover, there exists a direction of attraction for the inflationary trajectories that correspond to the constant volume direction. This basin of attraction enables the system to have an island of stability in the set of initial conditions. We provide explicit examples of these trajectories, compute the corresponding tilt of the density perturbations power spectrum and show that they provide a robust prediction of n_s approximately 0.96 for 60 e-folds of inflation.Comment: 27 pages, 9 figure

    Postembryonic establishment of megabase-scale gene silencing in nucleolar dominance

    Get PDF
    Nucleolar dominance is an epigenetic phenomenon in plant and animal genetic hybrids that describes the expression of 45S ribosomal RNA genes (rRNA genes) inherited from only one progenitor due to the silencing of the other progenitor’s rRNA genes. rRNA genes are tandemly arrayed at nucleolus organizer regions (NORs) that span millions of basepairs, thus gene silencing in nucleolar dominance occurs on a scale second only to X-chromosome inactivation in female mammals. In Arabidopsis suecica, the allotetraploid hybrid of A. thaliana and A. arenosa, theA. thaliana –derived rRNA genes are subjected to nucleolar dominance and are silenced via repressive chromatin modifications. However, the developmental stage at which nucleolar dominance is established in A. suecica is currently unknown. We show that nucleolar dominance is not apparent in seedling cotyledons formed during embryogenesis but becomes progressively established during early postembryonic development in tissues derived from both the shoot and root apical meristems. The progressive silencing of A. thaliana rRNA genes correlates with the transition of A. thaliana NORs from a decondensed euchromatic state associated with histone H3 that is trimethylated on lysine 4 (H3K4me3) to a highly condensed heterochromatic state in which the NORs are associated with H3K9me2 and 5-methylcytosine-enriched chromocenters. In RNAi-lines in which the histone deacetylases HDA6 and HDT1 are knocked down, the developmentally regulated condensation and inactivation of A. thaliana NORs is disrupted. Collectively, these data demonstrate that HDA6 and HDT1 function in the postembryonic establishment of nucleolar dominance, a process which recurs in each generatio

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∌\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit
    • 

    corecore