32 research outputs found

    Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities

    Full text link
    We obtain constraints on the slope of a universal stellar initial mass function (IMF) over a range of cosmic star-formation histories (SFH) using z=0.1 luminosity densities in the range from 0.2 to 2.2 microns. The age-IMF degeneracy of integrated spectra of stellar populations can be broken for the Universe as a whole by using direct measurements of (relative) cosmic SFH from high-redshift observations. These have only marginal dependence on uncertainties in the IMF, whereas, fitting to local luminosity densities depends strongly on both cosmic SFH and the IMF. We fit to these measurements using population synthesis and find the best-fit IMF power-law slope to be Gamma=1.15+-0.2 (0.5 < M/M_solar < 120). This slope is in good agreement with the Salpeter IMF slope (Gamma=1.35). A strong upper limit of Gamma<1.7 is obtained which effectively rules out the Scalo IMF due to its too low fraction of high-mass stars. This upper limit is at the 99.7% confidence level if we assume a closed-box chemical evolution scenario and 95% if we assume constant solar metallicity. Fitting to the H-alpha line luminosity density, we obtain a best-fit IMF slope in good agreement with that derived from broadband measurements. Marginalizing over cosmic SFH and IMF slope, we obtain (95% conf. ranges, h=1): omega_stars = 1.1-2.0 E-3 for the stellar mass density; rho_sfr = 0.7-4.1 E-2 M_solar/yr/Mpc^3 for the star-formation rate density, and; rho_L = 1.2-1.7 E+35 W/Mpc^3 for the bolometric, attenuated, stellar, luminosity density (0.09-5 microns). Comparing this total stellar emission with an estimate of the total dust emission implies a relatively modest average attenuation in the UV (<=1 magnitude at 0.2 microns).Comment: 16 pages, accepted by Ap

    A Significant Population of Candidate New Members of the ρ Ophiuchi Cluster

    Get PDF
    We present a general method for identifying the pre-main-sequence population of any star-forming region, unbiased with respect to the presence or absence of disks, in contrast to samples selected primarily via their mid-infrared emission from Spitzer surveys. We have applied this technique to a new, deep, wide-field, near-infrared imaging survey of the ρ Ophiuchi cloud core to search for candidate low-mass members. In conjunction with published Spitzer IRAC photometry and least-squares fits of model spectra (COND, DUSTY, NextGen, and blackbody) to the observed spectral energy distributions, we have identified 948 candidate cloud members within our 90% completeness limits of J = 20.0, H = 20.0, and Ks = 18.50. This population represents a factor of ~3 increase in the number of known young stellar objects in the ρ Ophiuchi cloud. A large fraction of the candidate cluster members (81% ± 3%) exhibit infrared excess emission consistent with the presence of disks, thus strengthening the possibility of their being bona fide cloud members. Spectroscopic follow-up will confirm the nature of individual objects, better constrain their parameters, and allow an initial mass function to be derived

    Hubble Space Telescope Observations of the Draco Dwarf Spheroidal

    Get PDF
    We present an F606W-F814W color-magnitude diagram for the Draco dwarf spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity function is well-sampled to 3 magnitudes below the turn-off. We see no evidence for multiple turnoffs and conclude that, at least over the field of the view of the WFPC2, star formation was primarily single-epoch. If the observed number of blue stragglers is due to extended star formation, then roughly 6% (upper limit) of the stars could be half as old as the bulk of the galaxy. The color difference between the red giant branch and the turnoff is consistent with an old population and is very similar to that observed in the old, metal-poor Galactic globular clusters M68 and M92. Despite its red horizontal branch, Draco appears to be older than M68 and M92 by 1.6 +/- 2.5 Gyrs, lending support to the argument that the ``second parameter'' which governs horizontal branch morphology must be something other than age. Draco's observed luminosity function is very similar to that of M68, and the derived initial mass function is consistent with that of the solar neighborhood.Comment: 16 pages, AASTeX, 9 postscript figures, figures 1 and 2 available at ftp://bb3.jpl.nasa.gov/pub/draco/. Accepted for publication in the Astronomical Journa

    Deficit of wide binaries in the eta Chamaeleontis young cluster

    Full text link
    We have carried out a sensitive high-resolution imaging survey of stars in the young (6-8 Myr), nearby (97 pc) compact cluster around eta Chamaeleontis to search for stellar and sub-stellar companions. Given its youth and proximity, any sub-stellar companions are expected to be luminous, especially in the near infrared, and thus easier to detect next to their parent stars. Here, we present VLT/NACO adaptive optics imaging with companion detection limits for 17 eta Cha cluster members, and follow-up VLT/ISAAC near-infrared spectroscopy for companion candidates. The widest binary detected is ~0.2", corresponding to the projected separation 20 AU, despite our survey being sensitive down to sub-stellar companions outside 0.3", and planetary mass objects outside 0.5". This implies that the stellar companion probability outside 0.3" and the brown dwarf companion probability outside 0.5" are less than 0.16 with 95% confidence. We compare the wide binary frequency of eta Cha to that of the similarly aged TW Hydrae association, and estimate the statistical likelihood that the wide binary probability is equal in both groups to be < 2e-4. Even though the eta Cha cluster is relatively dense, stellar encounters in its present configuration cannot account for the relative deficit of wide binaries. We thus conclude that the difference in wide binary probability in these two groups provides strong evidence for multiplicity properties being dependent on environment. In two appendices we derive the projected separation probability distribution for binaries, used to constrain physical separations from observed projected separations, and summarize statistical tools useful for multiplicity studies.Comment: Accepted by ApJ. 13 pages, 10 figure

    The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Full text link
    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxies, ~ 75%, are centrally concentrated, with a red bulge or spheroid, while blue galaxies usually have exponential profiles. However, there are two subclasses of red galaxies that are not bulge-dominated: edge-on disks and a second category which we term diffuse red galaxies (DIFRGs). The distant edge-on disks are similar in appearance and frequency to those at low redshift, but analogs of DIFRGs are rare among local red galaxies. DIFRGs have significant emission lines, indicating that they are reddened mainly by dust rather than age. The DIFRGs in our sample are all at z>0.64, suggesting that DIFRGs are more prevalent at high redshifts; they may be related to the dusty or irregular extremely red objects (EROs) beyond z>1.2 that have been found in deep K-selected surveys. (abridged)Comment: ApJ in press. 24 pages, 17 figures (12 color). The DEEP public database is available at http://saci.ucolick.org

    IR and UV Galaxies at z=0.6 -- Evolution of Dust Attenuation and Stellar Mass as Revealed by SWIRE and GALEX

    Get PDF
    We study dust attenuation and stellar mass of z0.6\rm z\sim 0.6 star-forming galaxies using new SWIRE observations in IR and GALEX observations in UV. Two samples are selected from the SWIRE and GALEX source catalogs in the SWIRE/GALEX field ELAIS-N1-00 (Ω=0.8\Omega = 0.8 deg2^2). The UV selected sample has 600 galaxies with photometric redshift (hereafter photo-z) 0.5z0.70.5 \leq z \leq 0.7 and NUV23.5\leq 23.5 (corresponding to \rm L_{FUV} \geq 10^{9.6} L_\sun). The IR selected sample contains 430 galaxies with f24μm0.2f_{24\mu m} \geq 0.2 mJy (\rm L_{dust} \geq 10^{10.8} L_\sun) in the same photo-z range. It is found that the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 UV galaxies are consistent with that of their z=0 counterparts of the same LFUV\rm L_{FUV}. For IR galaxies, the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 LIRGs (\rm L_{dust} \sim 10^{11} L_\sun) are about a factor of 2 lower than local LIRGs, whereas z=0.6 ULIRGs (\rm L_{dust} \sim 10^{12} L_\sun) have the same mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios as their local counterparts. This is consistent with the hypothesis that the dominant component of LIRG population has changed from large, gas rich spirals at z>0.5>0.5 to major-mergers at z=0. The stellar mass of z=0.6 UV galaxies of \rm L_{FUV} \leq 10^{10.2} L_\sun is about a factor 2 less than their local counterparts of the same luminosity, indicating growth of these galaxies. The mass of z=0.6 UV lunmous galaxies (UVLGs: \rm L_{FUV} > 10^{10.2} L_\sun) and IR selected galaxies, which are nearly exclusively LIRGs and ULIRGs, is the same as their local counterparts.Comment: 27 pages, 8 figures, to be published in the Astrophysical Journal Supplement series dedicated to GALEX result

    Chemical and Photometric Evolution of Extended Ultraviolet Disks: Optical Spectroscopy of M83 (NGC5236) and NGC4625

    Get PDF
    We present the results from the analysis of optical spectra of 31 Halpha-selected regions in the extended UV (XUV) disks of M83 (NGC5236) and NGC4625 recently discovered by GALEX. The spectra were obtained using IMACS at Las Campanas Observatory 6.5m Magellan I telescope and COSMIC at the Palomar 200-inch telescope, respectively for M83 and NGC4625. The line ratios measured indicate nebular oxygen abundances (derived from the R23 parameter) of the order of Zsun/5-Zsun/10. For most emission-line regions analyzed the line fluxes and ratios measured are best reproduced by models of photoionization by single stars with masses in the range 20-40 Msun and oxygen abundances comparable to those derived from the R23 parameter. We find indications for a relatively high N/O abundance ratio in the XUV disk of M83. Although the metallicities derived imply that these are not the first stars formed in the XUV disks, such a level of enrichment could be reached in young spiral disks only 1 Gyr after these first stars would have formed. The amount of gas in the XUV disks allow maintaining the current level of star formation for at least a few Gyr.Comment: 52 pages, 8 tables, 7 figures, accepted for publication in Ap

    The Gravitational Wave Background from Cosmological Compact Binaries

    Get PDF
    We use a population synthesis approach to characterise, as a function of cosmic time, the extragalactic close binary population descended from stars of low to intermediate initial mass. The unresolved gravitational wave (GW) background due to these systems is calculated for the 0.1-10 mHz frequency band of the planned Laser Interferometer Space Antenna (LISA). This background is found to be dominated by emission from close white dwarf-white dwarf pairs. The spectral shape can be understood in terms of some simple analytic arguments. To quantify the astrophysical uncertainties, we construct a range of evolutionary models which produce populations consistent with Galactic observations of close WD-WD binaries. The models differ in binary evolution prescriptions as well as initial parameter distributions and cosmic star formation histories. We compare the resulting background spectra, whose shapes are found to be insensitive to the model chosen, and different to those found recently by Schneider et al. (2001). From this set of models, we constrain the amplitude of the extragalactic background to be 1E-12 < Omega(1 mHz) < 6E-12, in terms of Omega(f), the fraction of closure density received in gravitational waves in the logarithmic frequency interval around f.Comment: 20 pages, 17 figures, accepted for publication in MNRAS. Minor changes, including some additional population synthesis models. Conclusions and main results unchange

    A New Approach to Determine the Initial Mass Function in the Solar Neighborhood

    Get PDF
    Oxygen to iron abundance ratios of metal-poor stars provide information on nucleosynthesis yields from massive stars which end in Type II supernova explosions. Using a standard model of chemical evolution of the Galaxy we have reproduced the solar neighborhood abundance data and estimated the oxygen and iron yields of genuine SN II origin. The estimated yields are compared with the theoretical yields to derive the relation between the lower and upper mass limits in each generation of stars and the IMF slope. Independently of this relation, we furthermore derive the relation between the lower mass limit and the IMF slope from the stellar mass to light ratio in the solar neighborhood. These independent relations unambiguously determine the upper mass limit of mu=50±10Msunm_u=50 \pm 10 M_sun and the IMF slope index of 1.3 - 1.6 above 1 M_sun. This upper mass limit corresponds to the mass beyond which stars end as black holes without ejecting processed matter into the interstellar medium. We also find that the IMF slope index below 0.5 M_sun cannot be much shallower than 0.8.Comment: 13 pages LaTex, 4 PostScript figures, to appear in ApJ (July 1, Vol.483
    corecore