26 research outputs found

    A Formal View on Training of Weighted Tree Automata by Likelihood-Driven State Splitting and Merging

    Get PDF
    The use of computers and algorithms to deal with human language, in both spoken and written form, is summarized by the term natural language processing (nlp). Modeling language in a way that is suitable for computers plays an important role in nlp. One idea is to use formalisms from theoretical computer science for that purpose. For example, one can try to find an automaton to capture the valid written sentences of a language. Finding such an automaton by way of examples is called training. In this work, we also consider the structure of sentences by making use of trees. We use weighted tree automata (wta) in order to deal with such tree structures. Those devices assign weights to trees in order to, for example, distinguish between good and bad structures. The well-known expectation-maximization algorithm can be used to train the weights for a wta while the state behavior stays fixed. As a way to adapt the state behavior of a wta, state splitting, i.e. dividing a state into several new states, and state merging, i.e. replacing several states by a single new state, can be used. State splitting, state merging, and the expectation maximization algorithm already were combined into the state splitting and merging algorithm, which was successfully applied in practice. In our work, we formalized this approach in order to show properties of the algorithm. We also examined a new approach – the count-based state merging algorithm – which exclusively relies on state merging. When dealing with trees, another important tool is binarization. A binarization is a strategy to code arbitrary trees by binary trees. For each of three different binarizations we showed that wta together with the binarization are as powerful as weighted unranked tree automata (wuta). We also showed that this is still true if only probabilistic wta and probabilistic wuta are considered.:How to Read This Thesis 1. Introduction 1.1. The Contributions and the Structure of This Work 2. Preliminaries 2.1. Sets, Relations, Functions, Families, and Extrema 2.2. Algebraic Structures 2.3. Formal Languages 3. Language Formalisms 3.1. Context-Free Grammars (CFGs) 3.2. Context-Free Grammars with Latent Annotations (CFG-LAs) 3.3. Weighted Tree Automata (WTAs) 3.4. Equivalences of WCFG-LAs and WTAs 4. Training of WTAs 4.1. Probability Distributions 4.2. Maximum Likelihood Estimation 4.3. Probabilities and WTAs 4.4. The EM Algorithm for WTAs 4.5. Inside and Outside Weights 4.6. Adaption of the Estimation of Corazza and Satta [CS07] to WTAs 5. State Splitting and Merging 5.1. State Splitting and Merging for Weighted Tree Automata 5.1.1. Splitting Weights and Probabilities 5.1.2. Merging Probabilities 5.2. The State Splitting and Merging Algorithm 5.2.1. Finding a Good π-Distributor 5.2.2. Notes About the Berkeley Parser 5.3. Conclusion and Further Research 6. Count-Based State Merging 6.1. Preliminaries 6.2. The Likelihood of the Maximum Likelihood Estimate and Its Behavior While Merging 6.3. The Count-Based State Merging Algorithm 6.3.1. Further Adjustments for Practical Implementations 6.4. Implementation of Count-Based State Merging 6.5. Experiments with Artificial Automata and Corpora 6.5.1. The Artificial Automata 6.5.2. Results 6.6. Experiments with the Penn Treebank 6.7. Comparison to the Approach of Carrasco, Oncina, and Calera-Rubio [COC01] 6.8. Conclusion and Further Research 7. Binarization 7.1. Preliminaries 7.2. Relating WSTAs and WUTAs via Binarizations 7.2.1. Left-Branching Binarization 7.2.2. Right-Branching Binarization 7.2.3. Mixed Binarization 7.3. The Probabilistic Case 7.3.1. Additional Preliminaries About WSAs 7.3.2. Constructing an Out-Probabilistic WSA from a Converging WSA 7.3.3. Binarization and Probabilistic Tree Automata 7.4. Connection to the Training Methods in Previous Chapters 7.5. Conclusion and Further Research A. Proofs for Preliminaries B. Proofs for Training of WTAs C. Proofs for State Splitting and Merging D. Proofs for Count-Based State Merging Bibliography List of Algorithms List of Figures List of Tables Index Table of Variable Name

    Inklusionsorientierte Schulentwicklung

    Get PDF
    Der Band eröffnet einen interdisziplinĂ€ren Zugang zur Thematik der inklusionsorientierten Schulentwicklung, indem die Dimensionen der Organisations-, Personal- und Unterrichtsentwicklung aus Perspektive verschiedener (Sub-)Disziplinen und ZugĂ€nge betrachtet und miteinander verknĂŒpft werden. Neben einer historisch orientierten Inklusionsforschung, mit der Fragen möglicher AnknĂŒpfungspunkte, PfadabhĂ€ngigkeiten oder ZĂ€suren bearbeitet werden, widmen sich die BeitrĂ€ge des Bandes u.a. der Analyse des Status quo schulischer Inklusion, z.B. hinsichtlich relevanter Merkmale inklusionsorientierten Unterrichts oder möglicher Grenzen der Inklusionsforschung und -implementierung. Zudem werden Zukunftsperspektiven aus gegenwĂ€rtigen wissenschaftlichen Diskursen und Erkenntnissen abgeleitet

    Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance

    Get PDF
    Ecosystem models are often calibrated and/or validated against derived remote sensing data products, such as MODIS leaf area index. However, these data products are generally based on their own models, whose assumptions may not be compatible with those of the ecosystem model in question, and whose uncertainties are usually not well quantified. Here, we develop an alternative approach whereby we modify an ecosystem model to predict full-range, high spectral resolution surface reflectance, which can then be compared directly against airborne and satellite data. Specifically, we coupled the two-stream representation of canopy radiative transfer in the Ecosystem Demography model (ED2) with a leaf radiative transfer model (PROSPECT 5) and a simple soil reflectance model. We then calibrated this model against reflectance observations from the NASA Airborne VIsible/InfraRed Imaging Spectrometer (AVIRIS) and survey data from 54 temperate forest plots in the northeastern United States. The calibration successfully constrained the posterior distributions of model parameters related to leaf biochemistry and morphology and canopy structure for five plant functional types. The calibrated model was able to accurately reproduce surface reflectance and leaf area index for sites with highly varied forest composition and structure, using a single common set of parameters across all sites. We conclude that having dynamic vegetation models directly predict surface reflectance is a promising avenue for model calibration and validation using remote sensing data.https://gmd.copernicus.org/preprints/gmd-2020-324/gmd-2020-324.pdfFirst author draf

    Assembling evidence for identifying reservoirs of infection

    Get PDF
    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems

    Count-based state merging for probabilistic regular tree grammars

    Get PDF
    We present an approach to obtain language models from a tree corpus using probabilistic regular tree grammars (prtg). Starting with a prtg only generating trees from the corpus, the prtg is generalized step by step by merging nonterminals. We focus on bottom-up deterministic prtg to simplify the calculations.Postprin

    A Formal View on Training of Weighted Tree Automata by Likelihood-Driven State Splitting and Merging

    No full text
    The use of computers and algorithms to deal with human language, in both spoken and written form, is summarized by the term natural language processing (nlp). Modeling language in a way that is suitable for computers plays an important role in nlp. One idea is to use formalisms from theoretical computer science for that purpose. For example, one can try to find an automaton to capture the valid written sentences of a language. Finding such an automaton by way of examples is called training. In this work, we also consider the structure of sentences by making use of trees. We use weighted tree automata (wta) in order to deal with such tree structures. Those devices assign weights to trees in order to, for example, distinguish between good and bad structures. The well-known expectation-maximization algorithm can be used to train the weights for a wta while the state behavior stays fixed. As a way to adapt the state behavior of a wta, state splitting, i.e. dividing a state into several new states, and state merging, i.e. replacing several states by a single new state, can be used. State splitting, state merging, and the expectation maximization algorithm already were combined into the state splitting and merging algorithm, which was successfully applied in practice. In our work, we formalized this approach in order to show properties of the algorithm. We also examined a new approach – the count-based state merging algorithm – which exclusively relies on state merging. When dealing with trees, another important tool is binarization. A binarization is a strategy to code arbitrary trees by binary trees. For each of three different binarizations we showed that wta together with the binarization are as powerful as weighted unranked tree automata (wuta). We also showed that this is still true if only probabilistic wta and probabilistic wuta are considered.:How to Read This Thesis 1. Introduction 1.1. The Contributions and the Structure of This Work 2. Preliminaries 2.1. Sets, Relations, Functions, Families, and Extrema 2.2. Algebraic Structures 2.3. Formal Languages 3. Language Formalisms 3.1. Context-Free Grammars (CFGs) 3.2. Context-Free Grammars with Latent Annotations (CFG-LAs) 3.3. Weighted Tree Automata (WTAs) 3.4. Equivalences of WCFG-LAs and WTAs 4. Training of WTAs 4.1. Probability Distributions 4.2. Maximum Likelihood Estimation 4.3. Probabilities and WTAs 4.4. The EM Algorithm for WTAs 4.5. Inside and Outside Weights 4.6. Adaption of the Estimation of Corazza and Satta [CS07] to WTAs 5. State Splitting and Merging 5.1. State Splitting and Merging for Weighted Tree Automata 5.1.1. Splitting Weights and Probabilities 5.1.2. Merging Probabilities 5.2. The State Splitting and Merging Algorithm 5.2.1. Finding a Good π-Distributor 5.2.2. Notes About the Berkeley Parser 5.3. Conclusion and Further Research 6. Count-Based State Merging 6.1. Preliminaries 6.2. The Likelihood of the Maximum Likelihood Estimate and Its Behavior While Merging 6.3. The Count-Based State Merging Algorithm 6.3.1. Further Adjustments for Practical Implementations 6.4. Implementation of Count-Based State Merging 6.5. Experiments with Artificial Automata and Corpora 6.5.1. The Artificial Automata 6.5.2. Results 6.6. Experiments with the Penn Treebank 6.7. Comparison to the Approach of Carrasco, Oncina, and Calera-Rubio [COC01] 6.8. Conclusion and Further Research 7. Binarization 7.1. Preliminaries 7.2. Relating WSTAs and WUTAs via Binarizations 7.2.1. Left-Branching Binarization 7.2.2. Right-Branching Binarization 7.2.3. Mixed Binarization 7.3. The Probabilistic Case 7.3.1. Additional Preliminaries About WSAs 7.3.2. Constructing an Out-Probabilistic WSA from a Converging WSA 7.3.3. Binarization and Probabilistic Tree Automata 7.4. Connection to the Training Methods in Previous Chapters 7.5. Conclusion and Further Research A. Proofs for Preliminaries B. Proofs for Training of WTAs C. Proofs for State Splitting and Merging D. Proofs for Count-Based State Merging Bibliography List of Algorithms List of Figures List of Tables Index Table of Variable Name
    corecore