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How to Read This Thesis

This chapter introduces some basic formatting and other specifics of this document that enable
the reader to make efficient use of it.

Navigation When a new notion is first mentioned, it is highlighted by using an italics font.
When a notion is defined, then it is typeset in italics and repeated on the margin to make it
easier to find the definition again later. Additionally, each defined notion is collected in the
Index.
To make the navigation through this work even more convenient, it might prove beneficial

to have the digital version available in a suitable viewer because this work makes extensive
use of clickable links. When viewed on a screen, clickable links can be identified by a colored
underlining.
Additionally, many mathematical notions are clickable links that lead directly to the respec-

tive definition of the notion. To ensure a good readability, these links are not especially high-
lighted. For example try to click on different parts in the formula run𝑄,𝛴 ⊆ T𝛴 ×U𝑄. Even if
a mathematical notion is overloaded, a particular usage of this notion is linked to the relevant
definition (e.g., we defined run for tree automata and we also defined run for string automata).

Structure This work is divided into 7 main chapters and 4 chapters in the appendix. The
former are numbered by Arabic numerals, the latter by capital Latin letters. To keep the main
chapters succinct, many simple proofs were put in the appendix. In that case the page number
of the proof is mentioned on the margin next to the proven statement.
Each main chapter starts with a short introduction to its topic. The introduction is followed

by a paragraph prefixed by “This Chapter”, which shortly summarizes the content of the
respective chapter. Another paragraph prefixed by “Related Work” gives references to other
publications.
The last page of this work presents an overview of variable names with their usual meanings

in the scope of this work.

Abbreviations Complex notions are usually abbreviated. To make sentences with abbrevi-
ations easier to read, we distinguish between the singular and plural form of an abbreviation.
The plural of an abbreviation is formed by appending a tiny “s” even if the not abbreviated plu-
ral is formed differently. For example we abbreviate “weighted tree automaton” by “wta” and
the plural “weighted tree automata” by “wtas”.

notion
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1. Introduction

“We speculated what it was like before we got language skills. When we humans
had our first thought, most likely we didn’t know what to think. It’s hard to think
without words ’cause you haven’t got a clue as to what you’re thinking. So if you
think we suffer from a lack of communication now, think what it must have been
like then, when people lived in a ‘verbal void’ – made worse by the fact that there
were no words such as ‘verbal void’.” — Jane Wagner [Web]

Nature gave humans the ability to speak and to listen. The humans refined their language
abilities and learned to write and to read. The invention of the electronic computer inevitably
lead to the idea to teach those abilities also to these machines.
Natural language processing (nlp) subsumes all applications of computers to deal with human

languages. This includes written as well as spoken language, and language is analyzed as well
as synthesized, i.e., used as input and as output, respectively. The following table lists some
examples of nlp applications.

application input → output examples

dictation software speech → text Dragon NaturallySpeaking
screen reader text → speech NonVisual Desktop Access
translation of texts text → text DeepL, Google Translate
handwriting recognition handwriting → text Google Handwriting Input
news article generation data → text AX Semantics, Wordsmith
grammar checker text → corrections LanguageTool

For many applications, especially those which use text as input, the knowledge of the syn-
tactic description of the processed sentences is important.

“Syntactic descriptions are concerned with three basic types of relationships in
sentences: sequence, e.g. in English adjectives normally precede the nouns they
modify, whereas in French they normally follow; dependency, i.e. relations be-
tween categories, e.g. prepositions may determine the morphological form (or
case) of the nouns which depend on them in many languages, and verbs often
determine the syntactic form of some of the other elements in a sentence —see be-
low); and constituency, for example a noun phrase may consist of a determiner,
an adjective and a noun.” — Hutchins and Somers [HS92, Section 2.5, page 17]

Let us consider the following sentence: “A hearing is scheduled on the issue today.” While
the sequence is already obvious by the sentence, the dependencies and constituencies can be
visualized as in Figure 1.1. The figure shows the constituency structure above the sentence and

11

https://www.nuance.com/dragon.html
https://www.nvaccess.org/
https://www.deepl.com/
https://translate.google.com/
https://play.google.com/store/apps/details?id=com.google.android.apps.handwriting.ime
https://www.ax-semantics.com/
https://automatedinsights.com/wordsmith
https://languagetool.org/


1. Introduction

a hearing is scheduled on the issue today

SBJ VCATT

ATT TMP
PC

ATT

DT NN VBZ VBN IN DT NN NN

NP NP
PP

NP-SBJ

NP-TMP

VP
VP

S

Figure 1.1.: Non-projective constituency and dependency structure of an English sentence.
[based on KMN09, Figure 2.1, page 17]

the dependency structure below the sentence.
The graphics for the constituent structure shows how constituents are hierarchically com-

bined to build the sentence. Each constituent is labeled by its grammatical role. The smallest
constituents are made up of single words of the sentence. For example the word a makes up
the constituent with the role of a determiner (DT), the word hearing makes up a constituent
with the role of a nominal noun (NN). These two constituents are combined to a larger con-
stituent with the role of a noun phrase (NP), and so on.

In the dependency structure, each arrow indicates a dependency. For a particular depen-
dency, the word at the arrowhead is called the dependent,1 the word at the other end of the
arrow is called the head ;1 the label of the arrow is called the dependency type. For example
hearing is a dependent of is, and is is a head of hearing; the dependency type is subject (SBJ).

Looking more closely at the consistency structure of our example sentence, we note that the
constituent labeled with NP-SBJ and consisting of the words “a hearing on the issue” (high-
lighted in red) is interrupted by the constituent labeled with VP and consisting of the words
“is scheduled today” (highlighted in blue). This implies that the constituent structure cannot
be drawn without crossing lines. A similar crossing can be seen in the dependency structure.
This phenomenon is called discontinuity or non-projectivity. However, in this work only syn-
tactic descriptions without discontinuities are considered; cf. Figure 1.2 for an example. It can
easily be seen that the example has no discontinuities because there are no crossing lines in
the graphics.

As mentioned earlier, some nlp applications need syntactic descriptions of sentences. An
application or component of an application that finds the syntactic description for a sentence
is called a parser. Finding the constituent and dependency structure of a sentence is called
constituent parsing [JM09, Chapter 13] and dependency parsing [KMN09], respectively.

1 | “Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or
parent, instead of head.” [KMN09, Section 1.1, page 2, Footnote 1]
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economic news had little effect on financial markets

SBJATT

OBJ

ATT ATT

PC

ATT

JJ NN VBD JJ NN IN JJ NNS

NP NP NP
PP

VP
S

Figure 1.2.: Projective constituency and dependency structure of an English sentence. [KMN09,
Figures 1.1 and 1.2, pages 2–3]

This work is motivated by constituent parsing of sentences resulting in constituent
structures without discontinuities.

In the context of parsing, a sentence is considered as a finite sequence of natural language
words. This includes sequences that make no sense or that are not grammatical. Also, the
morphology of words is not specially treated, and words are considered as atomic entities.
So, for example, a parser for English sentences does not dissect the words apple and apples to
see that they have the same word stem; a parser just knows how a word like apple or apples
may be used in a sentence and does not care about the particular representation of the word.
Nevertheless, morphology can be used to aid parsing. For example, in a preprocessing step,
each unknown word in a sentence could be replaced by a placeholder based on its morphology.
So an unknown word ending with “-ed” could for example be replaced by “past_participle” [cf.
JM09, Section 5.8.2]. After the replacement, however, the parser treats the placeholders just
like known words, namely as atomic entities.
Considering words as atomic entities allows us to employ formal language theory to deal

with parsing. Formally, the vocabulary of a language, including different morphological forms
of words, is represented by a formal alphabet. Thewords of the natural language are formalized
as symbols from the alphabet, and sentences are formalized as strings over the alphabet.2 The
following table juxtaposes the natural language view and the formal language view.

example natural language formal language description and example

b letter —
a, b, …, z Latin alphabet —

she word symbol atomic entity; 𝛽
she, saw, … vocabulary alphabet finite set of symbols; {𝛼, 𝛽, 𝜎}
she saw him sentence string finite sequence of symbols; 𝛼𝛼𝛽

English natural language formal language set of strings; {𝛽, 𝛼𝛽, 𝛼𝛼𝛽}

2 | In formal language theory, the term “word” has the same meaning as “string”. To avoid confusion, we use the
term “word” only for natural language words.
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1. Introduction

Since we only consider sentences without discontinuities, the constituent structures can be
formalized by (ordered) trees. Formally, a parser implements a function

parse : 𝛴∗ → T𝛥

where 𝛴 is an alphabet representing the vocabulary, 𝛴∗ denotes the set of all strings over 𝛴,
𝛥 is another alphabet, and T𝛥 denotes the set of all trees over 𝛥. This is still a rather simple
view on a parser; we will refine this idea later.

There are different ways to implement parsing. In transition-based parsing, the sentence is
transformed step-by-step until a final result is reached. The transformation steps are formalized
by transitions of a transition system. In general there are several transitions applicable in a
single step; a guide [KN10, Section 2.3] or oracle [Niv08, Definition 8] chooses the transition
that shall be applied by examining the current intermediate result. Transition based parsers
are used for dependency parsing [KM02; YM03; Niv08; KN10] as well as for constituent parsing
[Rat97; HN08b; HN08a].

Other parsing approaches make explicit use of formal languages to describe natural lan-
guages. In general these languages are infinite, but many of them can be represented in a finite
way by formal grammars. Therefore we speak of grammar-based parsing. When using string
grammars, the constituent structures are built from the derivations of the grammar. Besides
string grammars, which describe formal string languages, there are also tree grammars, which
describe formal tree languages. With each tree we can associate a string by reading the tree’s
leaves from left to right. The obtained string is called the tree’s yield. So, by going backwards
from the yield to the tree, also tree grammars can be used for constituent parsing.

One of the first grammar formalisms motivated by natural languages is the formalism of
context-free grammars (cfgs) [Cho56; Cho59], which defines the class of context-free string
languages. It is easy to find a cfg that reflects the constituent structure of the example sentence
in Figure 1.2 by creating a cfg rule for each inner node using the node’s label for the rule’s
left-hand side and the child labels for the right-hand side:

S → NP VP NP → JJ NN JJ → economic NN → news IN → on

PP → IN NP NP → JJ NNS JJ → little NN → effect VBD → had

VP → VBD NP PP JJ → financial NNS → markets

The tree in Figure 1.2 shows how the sentence can be derived by the cfg. A cfg created from
one or more trees in this way is called a read-off cfg.

There are many other grammar and automata formalisms that are closely connected to
context-free languages. Regular tree grammars [Bra69] and finite-state tree automata [Don70;
TW68], both surveyed by Gécseg and Steinby [GS84; GS15, Chapter 2], define the class of regu-
lar tree languages, however, only considering the trees’ yields results in the class of context-free
string languages. Context-free grammars with latent annotations [MMT05, Section 2]3 also
describe context-free string languages and regular tree languages (cf. Section 3.4).

Some linguistic phenomena, e.g., discontinuities (cf. Figure 1.1), cannot be captured by con-
text-free languages [Shi85]. Consequently, formalisms that go beyond the class of context-free

3 | Actually, Matsuzaki, Miyao, and Tsujii [MMT05] describe probabilistic context-free grammars with latent an-
notations, but the probabilities can easily be dropped.
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string languages were investigated, for instance, multiple context-free grammars [Sek+91], lin-
ear context-free rewriting systems [VWJ87], (simple) range concatenation grammars [Bou98a;
Bou98b], and tree-adjoining grammars [JLT75; also cf. JS97]. In contrast to context-free gram-
mars, these formalisms can deal with discontinuities. Formalisms that are more powerful than
context-free grammars, but still efficiently usable for parsing, are called mildly context-free
grammar formalisms [Kal10, Definition 2.7, page 23]. Kallmeyer [Kal10] gives a broad overview
of many mildly context-free formalisms. As mentioned earlier, we will not consider disconti-
nuities, and therefore we also will not consider mildly context-sensitive formalisms.
All mentioned formalisms have in common that the derivations of each grammar can be en-

coded by trees. Furthermore, for a particular grammar 𝐺 the set of all encoded derivations is
a regular tree language ℒ. The language defined by 𝐺 can be determined by applying a ho-
momorphism to each tree in ℒ. For example consider the read-off cfg of the tree in Figure 1.2.
Let 𝛴 be the terminal alphabet (the labels at the leafs of the tree), 𝑁 the set of non-terminals
(the labels of the inner nodes of the tree), and 𝑅 the set of rules of the cfg. Then we can
encode the derivations of the cfg by trees from T𝑅. The subset of T𝑅 that contains all the en-
coded derivations of the cfg is a regular tree language. We can now define the homomorphism
ℎs : T𝑅 → 𝛴∗ to map each tree to the string that is derived by the derivation encoded by the
tree. Additionally, we can define the homomorphism ℎt : T𝑅 → T𝑁∪𝛴 to map each encoded
derivation to the respective parse tree of the grammar. This idea is visualized in the following
graphics for an excerpt of the tree in Figure 1.2.

NP → JJ NN

JJ → economic NN → news

economic news …

NP

JJ

economic

NN

news

ℎs

ℎt

As mentioned earlier, a regular tree language can be represented by a regular tree grammar.
Hence, a grammar from any of the mentioned grammar formalisms can be represented by a
regular tree grammar and a homomorphism. This idea was originally formulated by Goguen,
Thatcher, Wagner, andWright [Gog+77].4 The same idea can be found in other formalisms, e.g.,
generalized context-free grammars [Pol84]5 and interpreted regular tree grammars [KK11].
This tight connection of the above formalisms to regular tree grammars makes results for reg-
ular tree grammars especially valuable. In this work, instead of regular tree grammars, we
prefer the equivalent formalism of finite-state tree automata.

This work focuses on constituent parsing using finite-state tree automata.

4 | Actually, Goguen, Thatcher, Wagner, and Wright [Gog+77] use many-sorted algebras instead of regular tree
grammars. However, many-sorted algebras and regular tree grammars are very closely connected.

5 | Unfortunately, the author was not able to acquire the original publication of Pollard [Pol84]. However, gener-
alized context-free grammars are shortly described or mentioned by other authors, who referenced Pollard’s
work [VWJ87, Section 4.1; Sek+91, Section 2.1; KK11, Section 6.3].
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1. Introduction

𝜎

𝛼
𝑞𝛼

𝜎

𝛼
𝑞𝛼

𝛽
𝑞𝛽

𝑞𝛽

𝑞𝛽

𝜎
𝑞𝛼 𝑞𝛽

𝑞𝛽

𝛼
𝑞𝛼

𝛽
𝑞𝛽

𝜎

𝛼 𝜎

𝛼 𝛽

Figure 1.3.: Visualization of transitions of a tree automaton (left-hand side), a tree (right-hand
side), and a combination of transitions which accepts that tree (middle).

A finite-state tree automaton, we will say just tree automaton for short, consists of a finite
set of transitions, and each transition is made up of states and terminal symbols. Additionally,
a tree automaton selects some states as root states. Consider for example the tree automaton
with the transitions

𝑞𝛽 → 𝜎(𝑞𝛼, 𝑞𝛽), 𝑞𝛼 → 𝛼, and 𝑞𝛽 → 𝛽,

where 𝑞𝛼 and 𝑞𝛽 are states and 𝛼 and 𝛽 are terminal symbols, and we select 𝑞𝛽 as root state. The
transitions are also visualized on the left-hand side of Figure 1.3. They can be imagined as pieces
of a jigsaw puzzle, however, there are typically several ways how transitions fit together, and
each transition may be used multiple times. The states define how the transitions fit together,
and by putting fitting transitions together we may build up a tree as visualized in the middle of
Figure 1.3. If a specific tree can be puzzled together with the transitions of a tree automaton and
the root ends up at a root state, then we say the automaton accepts the tree. Hence, in Figure 1.3
the tree on the right-hand side is accepted by the automaton because it can be puzzled together
as shown in the middle, and the state at the root is actually a root state. More generally, our
example automaton accepts exactly those trees that consist of a right-descending chain of zero
or more 𝜎-nodes that is terminated by a 𝛽-leaf and each 𝜎-node has an 𝛼-leaf as its left child.

As can be seen in the middle of Figure 1.3, puzzling together a tree assigns states to the posi-
tions of the tree. Such an assignment of states to the positions of the tree is called a run. In our
example, for every tree there is at most one run that is compatible with the transitions. How-
ever, in general there may be several runs for a tree that are compatible with the transitions.

When using a tree automaton for parsing some sentence 𝑤, there can be several trees that
are accepted by the automaton and that have 𝑤 as their yield. Therefore, a parser based on tree
automata actually implements a function

parse : 𝛴∗ → 𝒫(T𝛥)

where 𝒫(T𝛥) denotes the power set of T𝛥. Hence, parse may return several constituent struc-
tures for a single sentence.

In fact, this is important for nlp because natural language is ambiguous. For example con-
sider the following sentence: “She saw the man with the telescope.” There are two ways to inter-
pret this sentence, and in this example the interpretation determines the constituent structure.
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she saw the man with the telescope

PRP VBD DT NN IN DT NN

NP-SBJ NP NP

PP

VP
S

she saw the man with the telescope

PRP VBD DT NN IN DT NN

NP-SBJ NP NP
PP

NP

VP
S

In the left graphics she is using the telescope, and in the right graphics the man has the tele-
scope.
However, the different constituent trees returned by parse are typically not equally likely.

Our example sentence is a pathological case because both constituent structures we presented
make sense. However, a small change to the sentence lets us clearly prefer a specific constituent
structure: “She saw the man with the bag.” It seems rather unlikely, yet grammatically possible,
that she was using the bag to see the man. For such cases it would be desirable if a parser
implements a function

parse : 𝛴∗ → (T𝛥 → ℙ)

where ℙ denotes the set [0, 1] of probabilities. That means, applying parse to a sentence re-
turns a mapping from constituent structures to probabilities to signify which constituent trees
are most likely without ignoring the unlikely ones. Constituent structures that do not fit the
sentence at all are then mapped to probability 0.
Tree automata do not assign probabilities to trees, however, they can easily be extended to do

so. Probabilistic tree automata were already introduced by Ellis [Ell71].6 These can be extended
even further to weighted tree automata (wtas) [FV09, Section 3], which replace probabilities by
weights from an arbitrary semiring. Also other formalisms can be extended by probabilities
or weights. The earliest formal language formalism that makes use of weights are probably
probabilistic (string) automata [Rab63; also cf. Paz71]. There are also probabilistic context-free
grammars with latent annotations [MMT05, Section 2], probabilistic tree-adjoining grammars
[Res92], etc. Probabilities or weights can also be added to interpreted regular tree grammars
[KK11, Section 6.2], which subsumes adding probabilities or weights to any of the mentioned
unweighted formalisms.
Let us now focus on weighted tree automata (wtas). Recall that a tree automaton (without

weights) defines a set of root states and a set of transitions. Instead, a wta defines a mapping
from states to weights (root weights) and a mapping from transitions to weights (transition
weights), respectively. Alternatively, a wta can be defined as a pair (ℳ, 𝑝) where ℳ is a
tree automaton (without weights) and 𝑝 assigns weights to the root states and the transitions
of ℳ. The weights are elements from a semiring, but for now it is enough to think of them
as probabilities. These weights are used to assign weights to runs and trees: For the weight
of a run on a tree, the weight of the root state and for each use of a transition its weight is

6 | Formally, a tree automaton deals with ranked trees, i.e., trees over a ranked alphabet. In contrast to that, a prob-
abilistic tree automata as defined by Ellis [Ell71] deals with trees over an alphabet without ranks. Furthermore,
Ellis allows infinite trees.
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1. Introduction

multiplied. For the weight of a tree, the weights of all runs on that tree are summed up. A bit
more formally, for a tree 𝑡 we have

weight(𝑡) = ∑
𝑟∈runs on 𝑡

weightrun(𝑡, 𝑟) where

weightrun(𝑡, 𝑟) = weightroot(root state of 𝑟) ⋅ ∏
for each use of a

transition 𝜏 in 𝑟 on 𝑡

weighttrans(𝜏).

Also in the context of wta we continue to use the word “accept”; here we say a wta accepts
a tree if the wta assigns to the tree a non-zero weight. An assignment of weights to trees is
called a weighted tree language.

So, a parser based on a wta can return several trees together with their weights.7 If a linear
ordering is defined on the weights, then a parser may return only the tree with the best weight
according to the ordering [cf. Knu77]. Alternatively, for some 𝑘 ∈ ℕ a parser may return the
𝑘 best trees [HC05; also cf. Büc+10].

This work uses weighted tree automata as a formal basis for parsing with a specific
focus on probabilities as weights.

So far we have looked at the general idea of parsing by making use of wtas. In order to
be able to parse sentences of a particular natural language, we need a wta that is especially
tailored to that language.

In this work we investigate different algorithms to create wtas from example data.

The example data consists of constituent trees that are handcrafted by humans; we call such a
sequence of trees a tree corpus. It is important to note that a corpus may only contain finitely
many trees. The process of creating a wta from a corpus is called training.

It is possible to create a wta that accepts exactly the trees in the corpus. However, that would
not be very useful because then we would only be able to deal with sentences that were already
contained in the corpus. Instead, the trained wta should generalize the corpus, i.e., the wta
should also accept sensible trees that are not in the corpus. The challenge is now to find the
right amount of generalization. If a wta does not generalize the corpus enough, then the wta
adheres too much to the corpus and a lot of other sensible trees are not accepted by the wta;
this is called overfitting. If a wta generalizes to much, then the wta accepts many trees that are
not sensible; this is called underfitting.

In this work, training is formalized bymaking use of probability theory. We assume the trees
in the corpus are drawn according to an unknown probability distribution. The training esti-
mates this unknown probability distribution based on the corpus. However, the training may
not consider arbitrary probability distributions. Instead, the allowed probability distributions
are defined by amodel, which is a set of probability distributions. After training, the result can
be evaluated to check if the corpus was reasonably generalized. If underfitting or overfitting is
detected, then the training could be repeated with a modified model.

7 | In general it is hard for a parser to consider the weights of trees because the weight of a tree is a sum over
weights of runs. In practice, parsers typically avoid this summation and return a mapping from runs to weights
instead of a mapping from trees to weights.
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This formalization of training is typical in machine learning [cf. Bis06]. Closely connected
there is the field of grammatical inference [cf. Hig10]. Higuera [Hig10] tries to draw a line
between training (he calls it induction) and inference:

“Even if this is not formalised anywhere, I believe that ‘grammar induction’ is
about finding a grammar that can explain the data, whereas grammatical inference
relies on the fact that there is a (true or only possible) target grammar, and that
the quality of the process has to be measured relatively to this target.

[…] [I]n the case of grammar induction what really matters is the data and the
relationship between the data and the induced grammar, whereas in grammatical
inference the actual learning process is what is central and is being examined and
measured, not just the result of the process.” — Higuera [Hig10, pages ⅸ–ⅹ]

Let us now take a closer look at training in the context of wtas. In this case the allowed
probability distributions of the model are determined by wtas. For this purpose the weight
assignments to trees defined by these wtas must be probability distributions. We ensure this
by requiring that the considered wtas are probabilistic.

In this work we do modeling and training only with probabilistic wtas.

For simplicity let us assume that the model directly consists of the wtas instead of the prob-
ability distributions the wtas determine.

model ⊆ {wta (ℳ, 𝑝) ∣ tree automaton ℳ, probabilistic weight assignment 𝑝}

Hence, the training with such a model returns a wta instead of a probability distribution.
The training has to evaluate how well a wta from the model fits the corpus. For this purpose

the likelihood is used in this work. In this scenario the training searches for a wta in the model
such that the likelihood of the corpus is maximized. Therefore such a likelihood based training
is also called maximum likelihood estimation and the result is called the maximum likelihood
estimate.
For maximum likelihood estimation let us consider a special case of models. In this special

case a model is determined by a single tree automaton ℳ: The model consists of probabilistic
wtas that can be created from ℳ by adding weights.

modelℳ = {wta (ℳ, 𝑝) ∣ probabilistic weight assignment 𝑝}

With such a model the maximum likelihood estimate cannot be exactly determined in general,
but it can be approximated, e.g., by an EM algorithm for wtas. EM algorithms constitute a
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1. Introduction

whole class of algorithms [DLR77]. An EM algorithm for wtas can be easily derived from EM
algorithms for probabilistic context-free grammars [LY90; Pre04; CS07].

In an even more specialized case, the model is determined by a bottom-up deterministic tree
automaton. With a bottom-up deterministic tree automaton, there is at most one way to com-
bine the transitions to accept a specific tree. With such a model the maximum likelihood esti-
mate can be exactly determined.

In general, themodel determines the set of the probability distributions (orwtas in our special
case) the training might choose from. Hence, the model determines how much the training
generalizes the corpus. The more elements in the model, the higher is the risk of overfitting.
The less elements in the model, the higher is the risk of underfitting.

To check whether the training result yields the right amount of generalization, i.e., the result
does neither overfit nor underfit, we can analyze the likelihood of an additional corpus under
the training result. It is important that the data of this additional corpus is held out of the
training. Therefore this corpus is also called held-out data and checking the generalization with
it is called hold-out validation. Since we do not know in advance how much generalization is
needed, we can repeat the training with different models and then choose the training result
which performs best on the held-out data. For our special case where a single tree automaton
determines a model, we need several different tree automata to determine different models.

In the scope of this work, we do not use arbitrary tree automata to determine the different
models. Instead, we start with a tree automaton that can be easily determined from the corpus
and we then iteratively change this tree automaton in order to induce a sequence of different
models. In between the changes, we train and use the training result to guide the changes to
the tree automaton.

𝑖-th model training

corpus

adaption of model 𝑖-th wta

𝑖 ≔ 0

𝑖 ≔ 𝑖 + 1

As indicted by the graphics, it is possible to use the same corpus for adaption of the model and
training. Only for a subsequent hold-out validation (which is not depicted) it is necessary to
use other data.

In order to change a tree automaton, we use state merging and state splitting. The idea of
state merging is to choose a set of states and replace all occurrences of them by a single new
state. For example, if we consider the transition 𝑞𝛽 → 𝜎(𝑞𝛼, 𝑞𝛽) and we decide to merge
the states 𝑞𝛼 and 𝑞𝛽 into the new state 𝑞, then this transition is replaced by the transition
𝑞 → 𝜎(𝑞, 𝑞). We note that merging may replace different transitions by the same transition.
State splitting works the other way around: Each occurrence of a state is replaced by a state
from a set of new states. For a transition, all possible combinations of state replacements are
kept. For example, if we consider the transition 𝑞𝛽 → 𝜎(𝑞𝛼, 𝑞𝛽) and we split the state 𝑞𝛽 into
𝑞1

𝛽 and 𝑞2
𝛽, then this transition is replaced by four transitions: 𝑞1

𝛽 → 𝜎(𝑞𝛼, 𝑞1
𝛽), 𝑞1

𝛽 → 𝜎(𝑞𝛼, 𝑞2
𝛽),

𝑞2
𝛽 → 𝜎(𝑞𝛼, 𝑞1

𝛽), and 𝑞2
𝛽 → 𝜎(𝑞𝛼, 𝑞2

𝛽). Of course, we may split several states or merge several
groups of state at once.
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𝑞𝛽 → 𝜎(𝑞𝛼, 𝑞𝛽)
split 𝑞𝛽 into 𝑞1

𝛽 and 𝑞2
𝛽

merge 𝑞1
𝛽 and 𝑞2

𝛽 into 𝑞𝛽

𝑞1
𝛽 → 𝜎(𝑞𝛼, 𝑞1

𝛽)
𝑞1

𝛽 → 𝜎(𝑞𝛼, 𝑞2
𝛽)

𝑞2
𝛽 → 𝜎(𝑞𝛼, 𝑞1

𝛽)
𝑞2

𝛽 → 𝜎(𝑞𝛼, 𝑞2
𝛽)

In this work, two particular implementations are investigated that use the idea of state split-
ting and/or state merging to iteratively change the tree automaton that determines the model
used for training. The two approaches work in opposite directions: The state splitting andmerg-
ing algorithm [Pet+06] starts with a tree automaton that leads to underfitting. For this purpose
the read-off tree automaton of the corpus can be used, which is created from the corpus simi-
larly to the read-off cfg. By state splitting, the number of states and transitions is step-by-step
increased so the training has more possibilities to fit the corpus, hence, generalization is po-
tentially decreased with every step. The algorithm also uses state merging to undo splits that
seem to be useless in order to keep the size of the tree automaton manageable. The training
with the different models induced by these tree automata is done with an EM algorithm.
The other approach is the count-based state merging algorithm [DN15]. This algorithm starts

with a tree automaton that leads to overfitting. For this purpose the canonical tree automaton
of the corpus is used, which is a tree automaton that accepts exactly the trees in the corpus
by using all the subtrees in the corpus as states. By subsequent merging, the number of states
and transitions is step-by-step reduced so the training has less possibilities to fit the corpus,
hence, generalization is potentially increased with every step. Additionally, this algorithm
only considers bottom-up deterministic tree automaton. Therefore the training can exactly
determine the maximum likelihood estimates for each model. The opposite working directions
of the two algorithms are visualized in the following graphics.

underfitting

overfitting
iteration

ge
ne
ra
liz
at
io
n splitting→

state splitting and merging algorithm
merg

ing →

count-based state merging algorithm

read-off tree automaton

canonical tree automaton

So far, we ignored a problem that we have when tree automata are directly used to represent
the constituent trees of a natural language. The number of children of a node in a tree is called
the node’s rank. The transitions of a tree automaton determine the ranks that the nodes of
an accepted tree may have.8 Since a tree automaton has only finitely many transitions, the

8 | Formally, tree automata are actually defined for ranked alphabets and only work on ranked trees. In a ranked
alphabet, each symbol has an associated rank. In a ranked tree, the rank of the symbol at a node determines the
number of children of the node. Therefore a tree automaton must respect the symbols’ rank in its transitions.
However, this limitation can easily be mitigated by putting several versions of a symbol with different ranks
into the ranked alphabet.
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1. Introduction

nodes in the accepted trees can only have finitely many different ranks. In a constituent tree,
however, for instance a noun phrase (NP) may consist of an arbitrary number of adjectives (JJ)
followed by a noun (NN).

With unranked tree automata [Tha67, Section Ⅲ] there is a formalism where the different
nodes of the accepted trees may have infinitely many different ranks. The weighted version of
this formalism are weighted unranked tree automata [DV11, Section 3].

However, it might be desirable to adhere to (ranked) tree automata, for example to use algo-
rithms that already exist for tree automata, but that do not exist for unranked tree automata.
Fortunately, the limitation of the ranks when using tree automata can be mitigated by binariza-
tion. Binarization is about representing a tree (with nodes of arbitrary ranks) by binary trees,
i.e., trees whose nodes have at most rank 2. A binarization strategy is a bijection between (ar-
bitrary) trees and binary trees.9 A particular binarization strategy could for example map the
tree on the left-hand side of the following graphics to the tree on the right-hand side.

𝜎

Cons

𝛼

Null

Cons

𝛾

Cons

𝛼

Null

Null

Cons

𝛽

Null

Null

𝜎

𝛼 𝛾

𝛼

𝛽

When a binarization strategy is applied to a tree, then we say the tree is binarized ; conversely,
if the binarization strategy is applied backwards to a binary tree, then we say the binary tree
is unbinarized.

Following the ideas of Goguen, Thatcher, Wagner, and Wright [Gog+77], by combining a
binarization strategy with a tree automaton, we virtually get a device that may accept trees
with nodes of arbitrary rank: Let 𝑏 be a binarization strategy and ℳ a tree automaton; then
we define that the combination of 𝑏 and ℳ accepts a tree 𝑡 if ℳ accepts the tree 𝑏(𝑡). Such
a combination can also be used for training and parsing: Before the training, each tree in the
corpus is binarized, so the training results in a (weighted) tree automaton that accepts only
binary trees. When this automaton is then used for parsing, the parsing result is a binary tree,
however, it can easily unbinarized to match the form of the trees in the original corpus.

tree corpusbinarizebinary tree corpustrainwta

sentence parse binary tree unbinarize tree

9 | Actually, in Chapter 7 we will formalize a binarization strategy by a surjective mapping from binary trees to
(arbitrary) trees. Also, we will use sorted alphabets in order to consider only selected binary trees eligible for
binarization. However, to keep the introduction simple we adhere to bijective mappings between trees and
binary trees for now.
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1.1. The Contributions and the Structure of This Work

In this work we investigate three particular binarization strategies, which are motivated by
the binarization strategies suggested by Matsuzaki, Miyao, and Tsujii [MMT05]. For each of
the binarization strategies, it turns out that the combination of the binarization strategy with
tree automata is exactly as powerful as unranked tree automata; even in the weighted case (cf.
Chapter 7).

1.1. The Contributions and the Structure of This Work

Let us now introduce the particular structure of this work. While doing so, we also highlight
the contributions of this work.

Chapter 2 In this chapter we introduce the basic notions that are used in the subsequent
chapters of this work.

Chapter 3 In Section 3.1 we motivate the chapter by informally demonstrating the limi-
tations of context-free grammars when they are used to describe trees.
In Section 3.2 we introduce a formal definition of weighted context-free grammars with latent

annotations (wcfg-las), which subsumes less formal definitions of very similar formalisms from
the literature [MMT05, Section 2, probabilistic context-free grammars with latent annotations;
Ned16, Section 2, latent-variable context-free grammars].
In Section 3.3 we recall weighted tree automata (wtas) from the literature [FV09, Section 3].
In Section 3.4we show thatwcfg-las andwtas are equally powerful when describingweighted

tree languages (Theorem 3.4.9), and when describing weighted tree languages and weighted
string languages simultaneously (Theorem 3.4.10). If the reader is mainly interested in the
later chapters, then it suffices to read Section 3.3, which introduces wtas.

Chapter 4 In the introduction of this chapter, we present the basic ideas of modeling and
training as they can similarly be found in other literature [e.g., Bis06].
In Sections 4.1 to 4.3 we fix some basic notions like probability distributions, likelihood,

maximum likelihood estimation, and probabilistic wtas.
In Sections 4.4 to 4.6 we focus on the special case of maximum likelihood estimation where

the model is defined by probabilistic wtas with a fixed set of transitions. Since this case is
especially important to us, we call it maximum likelihood estimation for wtas. In this case, EM
algorithms [DLR77] can be used to approximately solve the maximum likelihood estimation.
We introduce three versions of an EM algorithm for wtas to solve this problem. Each version
is derived from a very similar algorithm for probabilistic context-free grammars, respectively
[Pre04; LY90; CS07]. We shortly argue that the three versions are equivalent. Having three
different versions of the same algorithm helps us in the next chapter.

Chapter 5 In Section 5.1 we formalize state splitting and state merging for wtas. This
allows us to show various small properties of splitting and merging, where some of them are
interesting enough to state theorems (Theorems 5.1.1, 5.1.5 and 5.1.7).
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1. Introduction

In Section 5.2 we formalize the state splitting and merging algorithm (Algorithm 5.1), which
was originally introduced and implemented by Petrov, Barrett, Thibaux, and Klein [Pet+06].
Our main theorem (Theorem 5.2.2) of this chapter shows that the likelihood of the corpus
increases or stays the same with every iteration of the algorithm.

In Section 5.2.1 we embed two ways to deal with weights while merging into our framework.
One way is presented in Theorem 5.2.4 and it follows the ideas of Petrov and Klein [PK07a].
The second way is presented inTheorem 5.2.5 and follows the ideas of Petrov, Barrett, Thibaux,
and Klein [Pet+06] and Corazza and Satta [CS07]).

In Section 5.2.2 it is argued that the presented formalization is compatible with the imple-
mentation of training in the Berkeley Parser [Pet+06].

Chapter 6 In Section 6.1 we start with some additional preliminaries, including the defi-
nition of bottom-up deterministic wtas.

In Section 6.2 we shortly revisit maximum likelihood estimation for wtas under consideration
of bottom-up determinism and in the context of merging.

In Section 6.3 we introduce the count-based state merging algorithm (cbsm, Algorithm 6.1),
which was originally introduced by Dietze and Nederhof [DN15]. In contrast to the original
publication, we clearly state a problem that we would like to solve, and by making several
assumptions we step-by-step replace this problem by simpler problems; the last problem is
then solved by cbsm.

In Section 6.4 we give some short notes about our implementation of cbsm.
In Sections 6.5 and 6.6 we use our implementation to conduct experiments with artificial

data as well as with real-world data from the Penn Treebank [MSM93].
In Section 6.7 cbsm is compared to an algorithm of Carrasco, Oncina, and Calera-Rubio

[COC01] for grammatical inference of probabilistic wtas (Algorithm 6.2). Although the al-
gorithms seem similar at the first glance, we expose some important differences and we argue
that the latter algorithm is not well suited for nlp.

Chapter 7 This chapter is about binarization and substantially extends one of the author’s
publications [Die16].

In Section 7.1 we recall weighted unranked tree automata (wutas) [DV11, Section 3], sorted
trees, andmany-sorted algebras [Gog+77] from the literature, and we introduceweighted sorted
tree automata (wstas), which enrich wtas by sorts in order to deal with sorted trees.

In Section 7.2 we use homomorphisms to formalize the three binarization strategies pre-
sented by Matsuzaki, Miyao, and Tsujii [MMT05]. For each binarization strategy, we show
that the combination of the binarization strategy with wtas is exactly as powerful as wutas
(Corollaries 7.2.2 and 7.2.4 and Theorem 7.2.9).

In Section 7.3 we define probabilistic wutas and for each binarization strategy we show that
the combination of the binarization strategy with probabilistic wtas is exactly as powerful as
probabilistic wutas (Theorems 7.3.18, 7.3.22 and 7.3.24). The proofs of these results are especially
delicate because the property “probabilistic” demands syntactic as well as semantic properties.
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2. Preliminaries

We start with basic notions to prepare a solid ground for the following chapters. All these
notions are well-known, and so the main purpose of this chapter is to fix the wording and
notation for later use.

This Chapter In Section 2.1 we introduce basic mathematical concepts like sets, relations,
functions, families, and extrema. In Section 2.2 we introduce algebraic structures in general,
and monoids and semirings as special algebraic structures. In Section 2.3 we introduce strings
and trees and languages of those.

Related Work For a more extensive introduction to the topics of this chapter, we refer to
other literature. The basics and algebraic structures are covered by Grätzer [Grä79] and Wech-
ler [Wec92]. For semirings, we especially refer to Golan [Gol99] as well as Droste and Kuich
[DK09]. The latter also covers weighted string languages. Tree languages are treated by Géc-
seg and Steinby [GS84; GS15], and weighted tree languages are investigated by to Fülöp and
Vogler [FV09].

2.1. Sets, Relations, Functions, Families, and Extrema

Let us start with basic mathematical definitions. To keep definitions short, we often write “the
notion is defined by notation = definition” instead of “the notion, denoted by notation, is defined
as definition.”

Sets For the scope of this work, an intuitive definition of sets is sufficient: A set is a collection
of objects, which we call the elements of the set. By 𝑎 ∈ 𝐴 we denote that 𝑎 is an element of
the set 𝐴. The set that has no elements is called the empty set and is denoted by ∅. A set that
has exactly one element is called a singleton.
Let 𝐴 and 𝐵 be sets. We use the following notations:
• 𝐴 ∪ 𝐵 denotes the union of 𝐴 and 𝐵,
• 𝐴 ∩ 𝐵 denotes the intersection of 𝐴 and 𝐵,
• 𝐴∖𝐵 denotes the difference of 𝐴 and 𝐵, i.e., the set that contains exactly those elements
of 𝐴 that are not elements of 𝐵,

• 𝐴 ⊆ 𝐵 and 𝐵 ⊇ 𝐴 both denote that 𝐴 is a subset of or equal to 𝐵,
• 𝐴 ⊂ 𝐵 and 𝐵 ⊃ 𝐴 both denote that 𝐴 is a subset of and not equal to 𝐵,
• 𝐴 and 𝐵 are called disjoint if 𝐴 ∩ 𝐵 = ∅.

We often use the set-builder notation to denote sets: By {element ∣ predicate} we denote the
set that contains exactly those elements for which the predicate holds.

set
element
empty set (∅)
singleton

disjoint
set-builder notation
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2. Preliminaries

Let 𝐴 be a set. The cardinality of 𝐴, denoted by |𝐴|, is the number of elements of 𝐴 if 𝐴 is
finite; we will not consider the cardinality of infinite sets. The powerset of 𝐴 is the set of all
subsets of 𝐴 and is defined by 𝒫(𝐴) = {𝐵 ∣ 𝐵 ⊆ 𝐴}. Note that |𝒫(𝐴)| = 2|𝐴| if 𝐴 is finite.
A partition of 𝐴 is a set 𝔸 ⊆ 𝒫(𝐴) ∖ {∅} such that ⋃ 𝔸 = 𝐴 and 𝐴1 ∩ 𝐴2 = ∅ for every
𝐴1, 𝐴2 ∈ 𝔸 with 𝐴1 ≠ 𝐴2.

The set of natural numbers (including zero) is denoted by ℕ. For every 𝑘 ∈ ℕ we abbreviate
the set {𝑛 ∈ ℕ ∣ 1 ≤ 𝑛 ≤ 𝑘} by [𝑘]. Note that [0] = ∅. The set of real numbers is denoted by
ℝ. For every 𝑎, 𝑏 ∈ ℝ we abbreviate the set {𝑟 ∈ ℝ ∣ 𝑎 ≤ 𝑟 ≤ 𝑏} by [𝑎, 𝑏]. If the lower bound 𝑎
and/or the upper bound 𝑏 shall not be included, then the left and/or right bracket is mirrored,
respectively, i.e., we write [𝑎, 𝑏[ or ]𝑎, 𝑏[ or ]𝑎, 𝑏]. For 𝐴 ∈ {ℕ, ℝ} and 𝑖 ∈ 𝐴 we abbreviate the
set {𝑎 ∈ 𝐴 ∣ 𝑎 ≥ 𝑖} by 𝐴≥𝑖. The abbreviations 𝐴≤𝑖, 𝐴>𝑖, and 𝐴<𝑖 are defined analogously.

Let 𝑛 ∈ ℕ and 𝐴1, …, 𝐴𝑛 be sets. The Cartesian product of 𝐴1, …, 𝐴𝑛 is defined by 𝐴1 ×…×
𝐴𝑛 = {(𝑎1, …, 𝑎𝑛) ∣ 𝑎1 ∈ 𝐴1, …, 𝑎𝑛 ∈ 𝐴𝑛} and the elements are called 𝑛-tuples. Consider the
following special cases:

• If 𝑛 = 0, then 𝐴1 × … × 𝐴𝑛 = {()}. We call () the empty tuple.
• If 𝑛 = 1, then 𝐴1 × … × 𝐴𝑛 = 𝐴1.
• If 𝑛 = 2, then the elements of 𝐴1 × 𝐴2 are also called pairs.
• If 𝑛 = 3, then the elements of 𝐴1 × 𝐴2 × 𝐴3 are also called triples.
• If 𝐴1, …, 𝐴𝑛 are all the same set 𝐴, then we abbreviate 𝐴1 × … × 𝐴𝑛 by 𝐴𝑛.

If any parentheses are used in the Cartesian product notation, then the parentheses are carried
over to the elements and we get nested tuples, e.g., for sets 𝐴, 𝐵, 𝐶, and 𝐷 we have 𝐴 × ((𝐵 ×
𝐶) × 𝐷) = {(𝑎, ((𝑏, 𝑐), 𝑑)) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}.

Relations Let 𝐴 and 𝐵 be sets. A set 𝑅 ⊆ 𝐴 × 𝐵 is called a relation (over 𝐴 and 𝐵). If
𝐴 = 𝐵, i.e., 𝑅 ⊆ 𝐴 × 𝐴, we just call 𝑅 a relation over 𝐴. The domain of 𝑅 is defined by
dom(𝑅) = 𝐴, the codomain of 𝑅 is defined by cod(𝑅) = 𝐵. Let 𝐴′ ⊆ 𝐴. By 𝑅(𝐴′) we
denote the set {𝑏 ∈ 𝐵 ∣ 𝑎 ∈ 𝐴′, (𝑎, 𝑏) ∈ 𝑅}. We abbreviate 𝑅({𝑎}) by 𝑅(𝑎) for every
𝑎 ∈ 𝐴. The image of 𝑅 is defined by im(𝑅) = 𝑅(𝐴). The inverse relation of 𝑅 is defined
by 𝑅−1 = {(𝑏, 𝑎) ∣ (𝑎, 𝑏) ∈ 𝑅}. If we use a suitable symbol to identify a relation, e.g.,
(≡) ⊆ 𝐴 × 𝐵, then we also write 𝑎 ≡ 𝑏 instead of (𝑎, 𝑏) ∈ (≡).

Let 𝐴, 𝐵, and 𝐶 be sets, and let 𝑅 ⊆ 𝐴 × 𝐵 and 𝑆 ⊆ 𝐵 × 𝐶 be relations. The composition
of 𝑅 and 𝑆, denoted by 𝑆 ∘ 𝑅, is defined as the relation 𝑇 ⊆ 𝐴 × 𝐶 where 𝑇 = {(𝑎, 𝑐) ∈
𝐴 × 𝐶 ∣ ∃𝑏 ∈ 𝐵: (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆}. Hence, we have (𝑆 ∘ 𝑅)(𝐴′) = 𝑆(𝑅(𝐴′)) for every
𝐴′ ⊆ 𝐴. Note that (∘) is associative, i.e., (𝑅 ∘ 𝑆) ∘ 𝑇 = 𝑅 ∘ (𝑆 ∘ 𝑇 ) for relations 𝑅, 𝑆, and 𝑇.

Using ⋅ as a placeholder, we sometimes implicitly define relations based on other relations.
For example, let𝐴, 𝐵, and𝐶 be sets, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and let 𝑆 ⊆ (𝐴×𝐵)×𝐴 and 𝑇 ⊆ (𝐶×𝐵)×
𝐵 be relations; then 𝑆(𝑎, 𝑇 (⋅, 𝑏)) is the relation 𝑅 ⊆ 𝐶 × 𝐴 such that 𝑅(𝑐) = 𝑆(𝑎, 𝑇 (𝑐, 𝑏))
for every 𝑐 ∈ 𝐶.

Let 𝐴 be a set. The identity relation on 𝐴 is defined by id𝐴 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}; we just write
id if 𝐴 is clear from the context. A relation 𝑅 ⊆ 𝐴 × 𝐴 is called

• reflexive if (𝑎, 𝑎) ∈ 𝑅 for every 𝑎 ∈ 𝐴,
• symmetric if (𝑎, 𝑏) ∈ 𝑅 implies (𝑏, 𝑎) ∈ 𝑅 for every 𝑎, 𝑏 ∈ 𝐴,
• antisymmetric if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 implies 𝑎 = 𝑏 for every 𝑎, 𝑏 ∈ 𝐴, and

cardinality |⋅|
powerset (𝒫)

partition

natural numbers (ℕ)
real numbers (ℝ)

Cartesian product
tuple

empty tuple

pair
triple

relation
domain (dom)
codomain (cod)

image (im)
inverse relation (⋅)−1

composition (∘)

identity relation (id)

reflexive
symmetric
antisymmetric
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• transitive if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 implies (𝑎, 𝑐) ∈ 𝑅 for every 𝑎, 𝑏, 𝑐 ∈ 𝐴.
An equivalence relation on 𝐴 is a reflexive, symmetric, and transitive relation (≡) ⊆ 𝐴 × 𝐴.

Note that the identity relation is an equivalence relation. Let 𝑎 ∈ 𝐴. The equivalence class of 𝑎
(induced by (≡)) is defined by [𝑎]≡ = {𝑏 ∈ 𝐴 ∣ 𝑎 ≡ 𝑏}; we just write [𝑎] if (≡) is clear from the
context. The quotient set of 𝐴 by (≡) is defined by 𝐴/≡ = {[𝑎] ∣ 𝑎 ∈ 𝐴}. Note that 𝐴/≡ is
a partition of 𝐴 and that for every partition 𝑃 of 𝐴 there is an equivalence relation (≡′) such
that 𝑃 = 𝐴/≡′.
A partial order on 𝐴 is a reflexive, antisymmetric, and transitive relation (≤) ⊆ 𝐴 × 𝐴. The

partial order (≤) is called a total order if 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎 for every 𝑎, 𝑏 ∈ 𝐴.

Functions A function (over 𝐴 and 𝐵) or synonymously mapping (from 𝐴 to 𝐵) is a relation
𝑓 ⊆ 𝐴 × 𝐵 such that 𝑓(𝑎) is a singleton for every 𝑎 ∈ 𝐴. Most of the time we identify 𝑓(𝑎)
with its element; e.g. we write 𝑏 = 𝑓(𝑎) instead of 𝑏 ∈ 𝑓(𝑎) for some 𝑏 ∈ 𝐵.
The set of all functions over 𝐴 and 𝐵 is denoted by 𝐴 → 𝐵. Instead of 𝑓 ∈ (𝐴 → 𝐵) we

write 𝑓: 𝐴 → 𝐵. We assume that → is right associative, i.e., 𝐴 → 𝐵 → 𝐶 = 𝐴 → (𝐵 → 𝐶)
for arbitrary sets 𝐴, 𝐵, and 𝐶. Also, we assume that × binds stronger than →, i.e., 𝐴 × 𝐵 →
𝐶 × 𝐷 = (𝐴 × 𝐵) → (𝐶 × 𝐷) for arbitrary sets 𝐴, 𝐵, 𝐶, and 𝐷.
A function 𝑓: 𝐴 → 𝐵 is called
• injective if 𝑓(𝑎1) = 𝑓(𝑎2) implies 𝑎1 = 𝑎2 for every 𝑎1, 𝑎2 ∈ 𝐴,
• surjective if im(𝑓) = cod(𝑓), i.e., for every 𝑏 ∈ 𝐵 there is an 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏,
and

• bijective if 𝑓 is injective and surjective, i.e., for every 𝑏 ∈ 𝐵 there is exactly one 𝑎 ∈ 𝐴
such that 𝑓(𝑎) = 𝑏.

A set 𝐴 is called countable if there is an injective mapping from 𝐴 to ℕ.
Let 𝑘 ∈ ℕ, let 𝐴0, …, 𝐴𝑘 be sets, and let 𝑓: 𝐴1 × … × 𝐴𝑘 → 𝐴0 be a function. The arity of 𝑓

is defined as 𝑘; we say that 𝑓 is a 𝑘-ary function. We have additional notions for the following
special cases:

• If 𝑘 = 2, then we call 𝑓 a binary function.
• If 𝑘 = 1, then we call 𝑓 a unary function.
• If 𝑘 = 0, then we call 𝑓 a nullary function.

If 𝑓 is nullary, then we identify 𝑓 with its value 𝑓() and we typically write 𝑓 ∈ 𝐴0 instead of
𝑓: {()} → 𝐴0. If 𝑓 is a binary function, then we sometimes use symbols like ∙ to denote 𝑓, i.e.,
∙: 𝐴1 × 𝐴2 → 𝐴0. Then we also write 𝑎1 ∙ 𝑎2 instead of ∙(𝑎1, 𝑎2) for 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2.

Example 2.1.1. Let 𝐴 = {0, 1, 2} and let

𝑓 = {((0, 0), 0), ((0, 1), 1), ((0, 2), 2),
((1, 0), 1), ((1, 1), 2), ((1, 2), 0),
((2, 0), 2), ((2, 1), 0), ((2, 2), 1)} ⊆ (𝐴 × 𝐴) × 𝐴.

Note that 𝑓 is a binary function from 𝐴 × 𝐴 → 𝐴. For example, we have 𝑓(1, 1) = 2 and

transitive
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𝑓(2, 𝑓(1, 1)) = 1. The function 𝑓 is surjective, but not injective. Let

𝑔 = {(0, {(0, 0), (1, 1), (2, 2)}),
(1, {(0, 1), (1, 2), (2, 0)}),
(2, {(0, 2), (1, 0), (2, 1)})} ⊆ 𝐴 × 𝒫(𝐴 × 𝐴).

Note that 𝑔 is a unary function from 𝐴 → 𝐴 → 𝐴. That means 𝑔 maps elements from 𝐴
to unary functions from 𝐴 → 𝐴. For example, 𝑔(0) is the identity mapping on 𝐴, hence
𝑔(0)(1) = 1. The function 𝑔 is injective, but not surjective. For every 𝑎 ∈ 𝐴 the function 𝑔(𝑎)
is bijective.

Let 𝐴 and 𝐵 be sets and 𝑓: 𝐴 → 𝐵 be a function. The kernel of 𝑓 is the equivalence relation
on 𝐴 defined by ker 𝑓 = {(𝑎1, 𝑎2) ∈ 𝐴 × 𝐴 ∣ 𝑓(𝑎1) = 𝑓(𝑎2)}.

Families Let 𝐼 and 𝐴 be sets. An (𝐼-indexed) family is a mapping 𝑓: 𝐼 → 𝐴. Instead of
writing 𝑓: 𝐼 → 𝐴, we introduce families by writing (𝑥𝑖 ∣ 𝑖 ∈ 𝐼) where 𝑥𝑖 can be any notation
referring to 𝑖; this allows us to write 𝑥𝑖 instead of 𝑓(𝑖). The domain 𝐼 of 𝑓 is also called the
index set of the family 𝑓. The elements in the image of 𝑓 are called the members of the family
𝑓. To quantify the codomain 𝐴 of 𝑓, we say 𝑓 is a family of elements of 𝐴. We sometimes
introduce a family 𝑓 by writing (𝑥𝑖 ∈ 𝐴 ∣ 𝑖 ∈ 𝐼) to make the codomain 𝐴 of 𝑓 explicit.

Let 𝐼 be a set and 𝐴 = (𝐴𝑖 ∣ 𝑖 ∈ 𝐼) a family of pairwise disjoint sets. For this special case of
a family, we often ambiguously use the name 𝐴 of the family to refer to the family itself and to
refer to the set⋃𝑖∈𝐼 𝐴𝑖. Themeaning of𝐴will always be clear from the context. Consequently,
we may write 𝑎 ∈ 𝐴 and we call 𝑎 an element of 𝐴. Note the difference to a member of 𝐴,
which is a set 𝐴𝑖 for some 𝑖 ∈ 𝐼.

Extrema Let 𝐴 be a set and (≤) a total order on 𝐴. Let 𝐴′ ⊆ 𝐴. If there is an element 𝑎 ∈ 𝐴′

such that 𝑎′ ≤ 𝑎 for every 𝑎′ ∈ 𝐴′, then 𝑎 is called the greatest element of 𝐴′ (w.r.t. (≤)) and
it is denoted by max𝐴′. The least element of 𝐴′ (w.r.t. (≤)), denoted by min𝐴′, is defined as
the greatest element of 𝐴′ w.r.t. (≤)−1. Note that there are cases such that there is no greatest
element; but if there is a greatest element, then it is unique. The same holds analogously for
the least element.

Let 𝐵 be a set, 𝐵′ ⊆ 𝐵, and 𝑓: 𝐵 → 𝐴 a function. We define the notation max𝑏∈𝐵′ 𝑓(𝑏)
as max 𝑓(𝐵′) and the notation argmax𝑏∈𝐵′ 𝑓(𝑏) as 𝑓−1(max 𝑓(𝐵′)) or equivalently {𝑏 ∈ 𝐵′ ∣
𝑓(𝑏) = max 𝑓(𝐵′)}. Analogously, we define the notation min𝑏∈𝐵′ 𝑓(𝑏) as min 𝑓(𝐵′) and the
notation argmin𝑏∈𝐵′ 𝑓(𝑏) as 𝑓−1(min 𝑓(𝐵′)). Often all elements of the result of argmax are
equally suited for further considerations; in such a case we often write 𝑏 = argmax𝑏′∈𝐵′ 𝑓(𝑏′)
and act as if argmax would return only a single element where 𝑏 is that element. Analogously,
we do the same for argmin.

2.2. Algebraic Structures

Let 𝐴 be a set and ∘, ∙ : 𝐴 × 𝐴 → 𝐴 be binary functions. We define the following notions:
• ∘ is associative if (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐) for every 𝑎, 𝑏, 𝑐 ∈ 𝐴,
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2.2. Algebraic Structures

• ∘ is commutative if 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for every 𝑎, 𝑏 ∈ 𝐴,
• 𝑎 ∈ 𝐴 is an identity element w.r.t. ∘ if 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑏 for every 𝑏 ∈ 𝐴,
• 𝑎 ∈ 𝐴 is an absorbing element w.r.t. ∘ if 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑎 for every 𝑏 ∈ 𝐴, and
• ∙ distributes over ∘ if (𝑎 ∘ 𝑏) ∙ 𝑐 = (𝑎 ∙ 𝑐) ∘ (𝑏 ∙ 𝑐) and 𝑐 ∙ (𝑎 ∘ 𝑏) = (𝑐 ∙ 𝑎) ∘ (𝑐 ∙ 𝑏) for
every 𝑎, 𝑏, 𝑐 ∈ 𝐴.

If ∘ is associative, then we may drop the parentheses when ∘ is consecutively applied to several
elements of 𝐴 since different positions of parentheses lead to the same result.
An algebraic structure 𝒜 = (𝐴, 𝑓1, …, 𝑓𝑛) consists of a carrier set 𝐴 and a list of functions

𝑓1 : 𝐴𝑘1 → 𝐴, …, 𝑓𝑛 : 𝐴𝑘𝑛 → 𝐴, 𝑛 ≥ 0, 𝑘1, …, 𝑘𝑛 ∈ ℕ. These functions are also called the
operations of 𝒜. We often identify the carrier set 𝐴 with the identifier of the algebraic structure
𝒜.
Amonoid is an algebraic structure ℳ = (𝑀, ∘, id) such that ∘ : 𝑀 × 𝑀 → 𝑀 is associative

and id ∈ 𝑀 is an identity element w.r.t. ∘. ℳ is called commutative if ∘ is commutative. Let
𝐼 be a set. An infinitary sum operation on 𝑀 for 𝐼 is a mapping from (𝐼 → 𝑀) → 𝑀, i.e.,
a mapping that associates with every family (𝑚𝑖 ∈ 𝑀 ∣ 𝑖 ∈ 𝐼) an element of 𝑀, which is
denoted by ∑𝑖∈𝐼 𝑚𝑖. The monoid ℳ is called complete if for every countable set 𝐼 there is an
infinitary sum operation on 𝑀 such that for every family (𝑚𝑖 ∈ 𝑀 ∣ 𝑖 ∈ 𝐼):

• if 𝐼 = ∅, then ∑𝑖∈𝐼 𝑚𝑖 = id ,
• if 𝐼 = {𝑗} is a singleton, then ∑𝑖∈𝐼 𝑚𝑖 = 𝑚𝑗,
• if 𝐼 = {𝑗, 𝑘} has exactly two elements, then ∑𝑖∈𝐼 𝑚𝑖 = 𝑚𝑗 + 𝑚𝑘, and
• if 𝐽 is a countable set and (𝐾𝑗 ⊆ 𝐼 ∣ 𝑗 ∈ 𝐽) is a family such that ⋃𝑗∈𝐽 𝐾𝑗 = 𝐼 and

𝐾𝑗 ∩ 𝐾𝑗′ = ∅ for every 𝑗, 𝑗′ ∈ 𝐽 with 𝑗 ≠ 𝑗′, then ∑𝑗∈𝐽 ∑𝑘∈𝐾𝑗
𝑚𝑘 = ∑𝑖∈𝐼 𝑚𝑖.

A semiring is an algebraic structureℛ = (𝑅, ⊕, ⊙, 0, 1) such that (𝑅, ⊕, 0) is a commutative
monoid, (𝑅, ⊙, 1) is a monoid, 0 is absorbing w.r.t. ⊙, and ⊙ distributes over ⊕. The operation
⊕ is called addition and ⊙ multiplication of the semiring. The result of an addition is called
sum and the result of a multiplication is called product. ℛ is called

• commutative if ⊙ is commutative,
• zero-sum free if 𝑎 ⊕ 𝑏 = 0 implies 𝑎 = 0 and 𝑏 = 0 for every 𝑎, 𝑏 ∈ 𝑅,
• zero-divisor free if 𝑎 ⊙ 𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0 for every 𝑎, 𝑏 ∈ 𝑅, and
• complete if the monoid (𝑅, ⊕, 0) is complete and for every countable set 𝐼, family (𝑟𝑖 ∈

𝑅 ∣ 𝑖 ∈ 𝐼), and 𝑟 ∈ 𝑅 we have

∑
𝑖∈𝐼

(𝑟 ⊙ 𝑟𝑖) = 𝑟 ⊙ (∑
𝑖∈𝐼

𝑟𝑖) and ∑
𝑖∈𝐼

(𝑟𝑖 ⊙ 𝑟) = (∑
𝑖∈𝐼

𝑟𝑖) ⊙ 𝑟.

We will often quantify a semiring ℛ without naming its operations explicitly. Then we assume
the names of the operations are +, ⋅, 0, and 1. Let 𝑘 ∈ ℕ and (𝑟𝑖 ∈ 𝑅 ∣ 𝑖 ∈ [𝑘]); then we may
abbreviate the sum and, if ℛ is commutative, the product of these elements as follows:

∑
𝑖∈[𝑘]

𝑟𝑖 = 𝑟1 + … + 𝑟𝑘, and ∏
𝑖∈[𝑘]

𝑟𝑖 = 𝑟1 ⋅ … ⋅ 𝑟𝑘,

where the sum is 0 and the product is 1 if 𝑘 = 0.
Example 2.2.1. Let us look at some examples of semirings. In some cases, different authors
give different names to the same semiring or the same name to different semirings. Examples
for semirings are given by

commutative
identity element
absorbing element
distribute

algebraic structure
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operation

monoid
commutative monoid
infinitary sum operation

complete monoid

semiring

addition, multiplication
sum, product
commutative semiring
zero-sum free
zero-divisor free
complete semiring
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• Goodman [Goo98, Figure 2.5, page 26],
• Golan [Gol99, pages 7 and 16],
• Droste and Kuich [DK09, Section 2, page 7],
• Droste and Gastin [DG09, Section 3, page 183], and
• Mohri [Moh09, Table 1, page 215].

The following list contains examples for semirings from these sources. In this list we use for a
set 𝐴 the abbreviations 𝐴+∞ = 𝐴∪{+∞}, 𝐴−∞ = 𝐴∪{−∞}, and 𝐴±∞ = 𝐴∪{−∞, +∞}.
({0, 1}, ∨ , ∧, 0 , 1) Boolean semiring [Goo98; Gol99; DK09; Moh09],
(ℕ+∞ , + , ⋅ , 0 , 1) counting semiring [Goo98],
(ℝ , + , ⋅ , 0 , 1) real numbers semiring,
(ℝ+∞

≥0 , + , ⋅ , 0 , 1) inside semiring [Goo98], probability semiring [Moh09],
(ℝ±∞ , ⊕log, +, +∞, 0) log semiring [Moh09], where 𝑥 ⊕log 𝑦 = − log(𝑒−𝑥 + 𝑒−𝑦),
(ℝ±∞ , min, +, +∞, 0) tropical semiring [Moh09],
(ℝ+∞

≥0 , min, +, +∞, 0) tropical semiring [Goo98; DK09], min-plus semiring [DK09],
(ℕ+∞ , min, +, +∞, 0) tropical semiring [Gol99; DK09], min-plus semiring [DK09],
(ℝ−∞ , max, +, −∞, 0) arctic semiring [Goo98],
(ℝ±∞

≥0 , max, +, −∞, 0) arctic semiring [DK09], max-plus semiring [DK09],
(ℕ±∞ , min, +, −∞, 0) arctic semiring [DK09], max-plus semiring [DK09],
([0, 1] , max, ⋅ , 0 , 1) Viterbi semiring [Goo98; DK09], probability semiring [DG09].

For this work, we define the Boolean semiring 𝔹 = ({0, 1}, ∨, ∧, 0, 1) and the probability
semiring ℙ = (ℝ≥0 ∪ {+∞}, +, ⋅, 0, 1). We prefer the name “probability semiring” for ℙ
becausewewill often only consider the elements from 0 to 1 and interpret them as probabilities.
Note that both, 𝔹 and ℙ, are complete [DK09, pages 8–9], zero-sum free, and zero-divisor free.

Let 𝐴 be a set, ℛ a semiring, and 𝑓: 𝐴 → ℛ a mapping. The support of 𝑓 is defined by
supp(𝑓) = 𝐴 ∖ 𝑓−1(0) = {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) ≠ 0}.

Lemma 2.2.2. Let ℛ be a semiring, 𝐼 be a finite set, (𝐴𝑖 ∣ 𝑖 ∈ 𝐼) a family of finite sets, and
(𝑓𝑖 : 𝐴𝑖 → ℛ ∣ 𝑖 ∈ 𝐼) a family of mappings. Then the following holds:

∑
𝑎1∈𝐴1

… ∑
𝑎𝑛∈𝐴𝑛

𝑛
∏
𝑖=1

𝑓𝑖(𝑎𝑖) =
𝑛

∏
𝑖=1

∑
𝑎∈𝐴𝑖

𝑓𝑖(𝑎).

2.3. Formal Languages

Alphabets An alphabet is a finite non-empty set. The elements of an alphabet are called
symbols.

A ranked alphabet 𝛴 is a family (𝛴(𝑘) ∣ 𝑘 ∈ ℕ) of pairwise disjoint sets such that ⋃𝑘∈ℕ 𝛴(𝑘)

is finite. The rank of a symbol is defined by rk(𝜎) = 𝑘 for every 𝑘 ∈ ℕ and 𝜎 ∈ 𝛴(𝑘). We also
denote the set ⋃𝑘∈ℕ 𝛴(𝑘) by 𝛴 and the meaning of 𝛴 will always be clear from the context. To
signify the rank of a symbol 𝜎 ∈ 𝛴(𝑘) for some 𝑘 ∈ ℕ, we write 𝜎(𝑘). We also use this notation

Boolean semiring (𝔹)
probability semiring (ℙ)

support (supp)

proven on page 165

alphabet
symbol
ranked alphabet
rank of symbol
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to introduce ranked alphabets; e.g., we write 𝛴 = {𝛼(0), 𝛽(0), 𝛾(1), 𝜎(2)} and mean that 𝛴 is a
ranked alphabet where 𝛴(0) = {𝛼, 𝛽}, 𝛴(1) = {𝛾}, and 𝛴(2) = {𝜎}.

Strings Let 𝛴 be a set. A string over 𝛴 is a finite sequence of elements from 𝛴. In the
literature, strings are often called words, but we will continue to say strings in order to avoid
confusion with words in natural languages. A string is denoted just by listing its elements, e.g.,
let 𝛤 = {𝑎, 𝑏}, then 𝑎𝑏𝑎𝑏 is a string over 𝛤. The set of all strings over 𝛴 is denoted by 𝛴∗.
To quantify a string and its symbols, we often write 𝑤 = 𝑤1…𝑤𝑛 ∈ 𝛴∗ without quantifying
𝑛 ∈ ℕ and 𝑤1, …, 𝑤𝑛 ∈ 𝛴 explicitly. Let 𝑤 = 𝑤1…𝑤𝑛 ∈ 𝛴∗. The length of 𝑤 is defined by
|𝑤| = 𝑛. The empty string, denoted by 𝜀, is the string of length 0. Letting 𝛤 be a set, we define
|𝑤|𝛤 = |{𝑖 ∈ [𝑛] ∣ 𝑤𝑖 ∈ 𝛤}|, and we abbreviate |𝑤|{𝜎} by |𝑤|𝜎. Letting 𝑣 = 𝑣1…𝑣𝑚 ∈ 𝛴∗ be
a string, the concatenation of 𝑣 and 𝑤 is defined by 𝑣𝑤 = 𝑣1…𝑣𝑚𝑤1…𝑤𝑛. Letting 𝑖 ∈ ℕ be a
number, the string 𝑤𝑖 is recursively defined by 𝑤𝑖 = 𝜀 if 𝑖 = 0, otherwise 𝑤𝑖 = 𝑤𝑖−1𝑤.
Typically we only consider alphabets for 𝛴. We note that 𝛴∗ is countable if and only if 𝛴 is

countable.

Formal String Languages Let 𝛴 be an alphabet. A (string) language over 𝛴 is a set of
strings over 𝛴, i.e., a subset of 𝛴∗. Note that a language may contain an infinite number of
strings.
Let ℛ be a semiring. An ℛ-weighted (string) language over 𝛴 is a mapping from 𝛴∗ → ℛ.

Trees Let 𝛴 be an alphabet. The set of unranked trees over 𝛴, denoted by U𝛴, is the smallest
set 𝑈 such that for every 𝜎 ∈ 𝛴, 𝑘 ∈ ℕ, and 𝑡1, …, 𝑡𝑘 ∈ 𝑈 we have 𝜎(𝑡1, …, 𝑡𝑘) ∈ 𝑈. We
abbreviate 𝜎() ∈ U𝛴 by 𝜎. Let 𝑡 = 𝜎(𝑡1, …, 𝑡𝑘) ∈ U𝛴. We call 𝜎 the root symbol of 𝑡. The
root rank of 𝑡 is defined by rk(𝑡) = 𝑘. The set of positions of 𝑡 is a finite subset of ℕ∗ and
recursively defined by pos(𝑡) = {𝜀} ∪ ⋃𝑖∈[𝑘]{𝑖𝜌 ∣ 𝜌 ∈ pos(𝑡𝑖)}. The height of 𝑡 is defined
by ht(𝑡) = 1 + max{|𝜌| ∣ 𝜌 ∈ pos(𝑡)}. Let 𝜌 ∈ pos(𝑡). The position 𝜌 is called a leaf if
𝜌1 ∉ pos(𝑡). The subtree of 𝑡 at 𝜌 is recursively defined by 𝑡|𝜌 = 𝑡 if 𝜌 = 𝜀 and 𝑡|𝜌 = 𝑡𝑖|𝜌′ if
𝜌 = 𝑖𝜌′. The set of all subtrees of 𝑡 is defined by subs(𝑡) = {𝑡|𝜌 ∣ 𝜌 ∈ pos(𝑡)}. This notion is
extended to sets 𝑇 ⊆ U𝛴 by subs(𝑇 ) = ⋃𝑡∈𝑇 subs(𝑡). The symbol of 𝑡 at 𝜌, denoted by 𝑡(𝜌),
is defined as the root symbol of 𝑡|𝜌. The rank of 𝑡 at 𝜌 is defined as rk(𝑡|𝜌). Let 𝛤 be a finite
set. The yield of 𝑡 restricted to 𝛤 is an element of 𝛤 ∗ and recursively defined by yield𝛤(𝑡) = 𝜎
if 𝑘 = 0 and 𝜎 ∈ 𝛤, and yield𝛤(𝑡) = yield𝛤(𝑡1)… yield𝛤(𝑡𝑘) otherwise. The yield of 𝑡 is
defined by yield(𝑡) = yield𝛴(𝑡). The tree 𝑡 is called monadic if pos(𝑡) ⊆ {1}∗, otherwise it is
called non-monadic. By U𝛴(𝛤 ) we denote the set of those trees 𝑡 ∈ U𝛴∪𝛤 such that for every
𝜌 ∈ pos(𝑡) we have that 𝑡(𝜌) ∈ 𝛴 if 𝜌 is not a leaf.
Let 𝛴 be an alphabet, 𝑡 ∈ U𝛴, and 𝜌 ∈ pos(𝑡). The node of 𝑡 at 𝜌 is defined as the pair (𝑡, 𝜌).

The label of the node (𝑡, 𝜌) is defined as 𝑡(𝜌). We also say the node (𝑡, 𝜌) is labeled by 𝑡(𝜌). If
𝜌 = 𝜌′𝑖 for some 𝑖 ∈ ℕ, then (𝑡, 𝜌′) is the parent of the node (𝑡, 𝜌). Let 𝑘 = rk(𝑡|𝜌) and 𝑖 ∈ [𝑘].
The 𝑖-th child node of (𝑡, 𝜌) is the node (𝑡, 𝜌𝑖). The 𝑖-th child tree of (𝑡, 𝜌) is the tree 𝑡|𝜌𝑖. We
often use the ambiguous term children for child nodes or child trees; the concrete meaning will
be clear from the context.

string

length of string |⋅|
empty string (𝜀)

concatenation

string language

weighted string lang.

unranked trees (U…)

root symbol
root rank
positions (pos)
height (ht)
leaf
subtree (…|…)
subtrees (subs)
symbol at position
rank at position
yield (yield)
monadic
U…(⋅)

node
label of node
parent
child node
child tree
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Let 𝛴 be a ranked alphabet. The set of ranked trees over 𝛴, denoted by T𝛴, is the smallest set
𝑇 such that for every 𝑘 ∈ ℕ, 𝜎 ∈ 𝛴(𝑘), 𝑡1, …, 𝑡𝑘 ∈ 𝑇 we have 𝜎(𝑡1, …, 𝑡𝑘) ∈ 𝑇. Obviously we
have T𝛴 ⊆ U𝛴. Therefore all notions for unranked trees are also valid for ranked trees. Note
that for ranked trees the symbol at a position determines the rank at this position.

Formal Tree Languages Let 𝛴 be an alphabet. An (unranked) tree language over 𝛴 is set of
trees over 𝛴, i.e., a subset of U𝛴. Let ℛ be a semiring. An ℛ-weighted (unranked) tree language
over 𝛴 is a mapping from U𝛴 → ℛ.

Let 𝛴 be a ranked alphabet and ℛ a semiring. A ranked tree language over 𝛴 is a subset of
T𝛴. An ℛ-weighted ranked tree language over 𝛴 is a mapping from T𝛴 → ℛ. Obviously a
ranked tree language is also an unranked tree language. An ℛ-weighted ranked tree language
over 𝛴 can be easily extended to an ℛ-weighted (unranked) tree language over 𝛴 by mapping
each tree in U𝛴 ∖T𝛴 to 0.

Contexts Let 𝛴 be a ranked alphabet such that 𝑥 ∉ 𝛴. The set of all contexts over 𝛴, denoted
by C𝛴, is defined as the set of all those trees 𝑡 ∈ T𝛴({𝑥}) that have exactly one position
𝜌 ∈ pos(𝑡) such that 𝑡(𝜌) = 𝑥. The composition of a context 𝑐 and a tree 𝑡, denoted by 𝑐 ⋅ 𝑡,
is defined as the tree resulting from replacing 𝑥 in 𝑐 by 𝑡. Note that 𝑡 could also be a context.
This composition operation is associative, i.e., (𝑐1 ⋅ 𝑐2) ⋅ 𝑡 = 𝑐1 ⋅ (𝑐2 ⋅ 𝑡) for every context 𝑐1 and
𝑐2, and every tree 𝑡. Occasionally, we extend this operation to sets: Let 𝐶 be a set of contexts
and 𝑇 a set of trees; then we define 𝐶 ⋅ 𝑇 = {𝑐 ⋅ 𝑡 ∣ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 }. We write 𝐶 ⋅ 𝑡 and 𝑐 ⋅ 𝑇
instead of 𝐶 ⋅ {𝑡} and {𝑐} ⋅ 𝑇, respectively. Let 𝑡 be a tree and 𝜌 ∈ pos(𝑡). The subcontext of 𝑡
at 𝜌, denoted by 𝑡|𝜌, is defined as the context 𝑐 such that 𝑐(𝜌) = 𝑥 and 𝑡 = 𝑐 ⋅ 𝑡|𝜌. Let 𝑛 ∈ ℕ.
The set of all contexts over 𝛴 of depth 𝑛, denoted by C𝑛

𝛴, is the subset of C𝛴 of those contexts
where the position of 𝑥 has length 𝑛. Hence, C0

𝛴 = {𝑥}.

ranked trees (T…)

tree language
weighted tree language

contexts (C…)

subcontext (…|…)

contexts of depth 𝑛
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In this chapter we give a formal definition of weighted context-free grammars
with latent annotations (wcfg-las) [cf. MMT05; Ned16], and we recall weighted
tree automata (wtas) from the literature [cf. FV09]. We show that both formalism
are equally powerful.

In Section 2.3 we recalled (weighted) string and tree languages. These can be used to formal-
ize natural language sentences and their syntactic structure, respectively. Since the number
of sentences in a natural language is typically infinite, we need finite representations of lan-
guages in order to be able to deal with them practically. Two formalisms to achieve that are
weighted context-free grammars with latent annotations (wcfg-las) and weighted tree automata
(wtas). These formalisms can be used to simultaneously describe specific weighted string and
tree languages.

This Chapter In Section 3.1 we start with a gentle, example-driven introduction on how
context-free grammars (cfgs) [Cho56; HU79, Chapter 4] can be used to formalize natural lan-
guage sentences and their syntactic structure using strings and trees, and we argue that the
power of cfgs to describe tree languages is rather limited. Therefore, in Section 3.2 we intu-
itively introduce context-free grammars with latent annotations (cfg-las). These grammars work
like cfgswhere the non-terminals are equipped with additional annotations to guide the deriva-
tion process. However, these annotations are not visible in a derived tree or string; this is why
they are called latent. We then formalize weighted cfg-las (wcfg-las), which are finite represen-
tations of specific weighted string and tree languages. Since we are not aware of a formal defi-
nition of wcfg-las, we provide our own formalization, which is based on informal/semi-formal
definitions from the literature (cf. related work).
In Section 3.3 we recall weighted tree automata (wtas) from the literature [FV09, Section 3.2];

wtas are another approach to finitely represent specific weighted tree languages. In Section 3.4
we show how a wta can be used to define a weighted string language, and we then show that
the power of wcfg-las and wtas to describe weighted string and tree languages is practically
the same (cf. Theorems 3.4.9 and 3.4.10).

RelatedWork Context-free grammars (cfgs) were originally introduced under the name type
2 phrase-structure grammars by Chomsky [Cho56; Cho59]. A survey about formal properties
of cfgs was compiled by Hopcroft and Ullman [HU79, Chapter 4]. The idea to equip the non-
terminals of a cfg with additional information to improve the performance in nlp applications
can be found in several publications [e.g. Joh98, parent annotation; KM03; Pre05]. Matsuzaki,
Miyao, and Tsujii [MMT05, Section 2] introduced probabilistic context-free grammars with la-
tent annotations (pcfg-las), which, in contrast to cfgs, allow a clear distinction between non-

33
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terminals and their annotation. We generalized pcfg-las to wcfg-las that use weights from a
commutative semiring. Hence, a pcfg-la is just a wcfg-la using the probability semiring ℙ.
Nederhof [Ned16, Section 2] introduces latent-variable context-free grammars (l-cfgs), which
can be seen as wcfg-las using the Boolean semiring 𝔹; he just gives a short outlook to l-pcfgs
[Ned16, Section 7], which correspond to wcfg-las over the probability semiring ℙ.

A survey on wtas was compiled by Fülöp and Vogler [FV09, Section 3]. We note that wtas
are a generalization of finite-state tree recognizers introduced by Thatcher and Wright [TW68]
and Doner [Don70], and surveyed by Gécseg and Steinby [GS84, Chapter Ⅱ; GS15, Chapter 2].
Ellis [Ell71] introduced probabilistic tree automata.

3.1. Context-Free Grammars (CFGs)

In this section we give a short and intuitive introduction on how context-free grammars (cfgs)
can be used in nlp, and we show a specific disadvantage they have when it comes to trees.

We assume that the reader is already familiar with cfgs. Formally a cfg is a finite represen-
tation of a string language. Therefore in nlp, cfgs can be used to describe the sentences of a
natural language. The vocabulary of the natural language then defines the terminals of the cfg.

At the same time, considering the parse trees of a cfg, a cfg also represents a tree language.
Therefore a cfg can also be used to represent the syntactic structure of a sentence. The syntactic
categories of a natural language then define the non-terminals of the cfg.

Example 3.1.1. Consider the following cfg for some simple English sentences. The start sym-
bol is S.

S → NP VP NP → the child VP → sees NP

NP → the children VP → see NP

NP → the deer

This grammar allows us to derive the sentences “the child sees the deer” and “the children see
the deer”. The corresponding parse trees look as follows:

S

NP

the child

VP

sees NP

the deer

S

NP

the children

VP

see NP

the deer

These are valid English sentences and their parse trees represent their grammatical structure.
Unfortunately, we may also derive the sentences “the child see the deer” and “the children sees
the deer”:
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S

NP

the child

VP

see NP

the deer

S

NP

the children

VP

sees NP

the deer

These are not valid English sentences because the grammatical number of the subject does not
match the predicate.

Example 3.1.1 shows the problem that a cfg might allow sentences and parse trees that are
not linguistically sensible. To solve the concrete problem from Example 3.1.1, we need to pass
around the information about the grammatical number. For this purpose we would have to
adapt the rules and non-terminals, but, consequently, this would change the parse trees. The
formal reason for this is that cfgs can only describe local tree languages [GS84; GS15, cf. Sec-
tion 2.9 local forests]. In the next section, we will look at a formalism that is similar to cfgs, but
does not require us to change the trees to solve the problem in Example 3.1.1.

3.2. Context-Free Grammars with Latent Annotations
(CFG-LAs)

In this section we start with an informal introduction of context-free grammars with latent
annotations (cfg-las) and continue Example 3.1.1 from the previous section. Afterwards we
formalize the slightly more general weighted cfg-las (wcfg-las).
A context-free grammar with latent annotations (cfg-la) is very similar to a cfg. The only dif-

ference is that non-terminals in rules are equipped with latent annotations. Strings are derived
in the same way as with cfgs. Also trees are derived in the same way as with cfgs, but in the
end the latent annotations are removed. So the annotations are called latent annotations be-
cause they are not visible in the final trees.
Let us illustrate this idea by continuing Example 3.1.1.

Example 3.2.1. Consider the following cfg-la, which is similar to the cfg in Example 3.1.1. The
latent annotations are denoted in brackets. Derivations start at S[∅].

S[∅] → NP[sg] VP[sg] NP[sg] → the child VP[sg] → sees NP[sg]
NP[sg] → the deer VP[sg] → sees NP[pl]

S[∅] → NP[pl] VP[pl] NP[pl] → the children VP[pl] → see NP[sg]
NP[pl] → the deer VP[pl] → see NP[pl]

As with the grammar from Example 3.1.1, we can derive the sentence “the deer sees the
children”. If we view the cfg-la from the current example as a cfg by assuming the latent
annotations are just a part of the non-terminals, then the following tree on the left-hand side

cfg-la
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is a parse tree of the sentence. By removing all latent annotations from that tree, we get the
tree on the right-hand side, which is a tree in the tree language defined by the cfg-la.

S[∅]

NP[sg]

the deer

VP[sg]

sees NP[pl]

the children

S

NP

the deer

VP

sees NP

the children
Now consider the sentence “the child sees the deer”. This sentence can also be derived by

our grammar. We note that the singular and plural of deer are identical and that the concrete
grammatical number of deer in this sentence is not clear. This fact is captured by our example
grammar: Viewing the grammar as cfg, there are two different parse trees. Nevertheless, both
trees lead to the same tree after dropping the latent annotations.

S[∅]

NP[sg]

the child

VP[sg]

sees NP[sg]

the deer

S[∅]

NP[sg]

the child

VP[sg]

sees NP[pl]

the deer

S

NP

the child

VP

sees NP

the deer

In contrast to Example 3.1.1, we cannot derive the sentences “the child see the deer” and “the
children sees the deer” because now the latent annotations ensure that the grammatical number
of the subject matches the predicate.

Let us now formalize the intuition from above. In the formal part, we use terminal symbols
or just terminals to represent words from a natural language. A natural language sentence is
then represented by a string of terminals.1 Also, instead of just defining cfg-las, we immediately
introduce the slightly more general wcfg-las, which additionally assign a weight to each rule.
Using weights from the Boolean semiring 𝔹, wcfg-las are equivalent to cfg-laswithout weights.

Definition 3.2.2 (wcfg-la; cf. Matsuzaki, Miyao, and Tsujii [MMT05, pcfg-la]). Let ℛ be a

1 | In formal texts, a string is often alternatively called a word. In order to avoid confusion with the meaning of
“word” in the context of natural language, we continue to use the term “string”.
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commutative semiring. An ℛ-weighted context-free grammar with latent annotations (ℛ-wcfg-
la) is a tuple (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) where

• 𝑁 is an alphabet (of non-terminals),
• 𝛴 is a finite set (of terminals),
• 𝐻 is an alphabet (of latent annotations),
• 𝐼 : 𝑁 × 𝐻 → ℛ is a mapping (initial weights), and
• 𝑃: (𝑁 × 𝐻) × ((𝑁 × 𝐻) ∪ 𝛴)∗ → ℛ is a mapping with finite support (rule weights),

such that 𝑁, 𝛴, and 𝑁 × 𝛨 are pairwise disjoint.

In the context of wcfg-las and if not stated otherwise, we always assume that ℛ is an arbi-
trary commutative semiring. Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be an ℛ-wcfg-la. We denote elements
(𝜎, ℎ) ∈ 𝑁 × 𝐻 by 𝜎[ℎ] and elements (𝐴, 𝑤) ∈ dom(𝑃 ) by 𝐴 → 𝑤. An element 𝐴 → 𝑤 of
dom(𝑃 ) is called a rule, and 𝐴 is called its left-hand side and 𝑤 its right-hand side. We abbre-
viate U𝑁(𝛴) by U𝐺.
We now define the semantics of wcfg-las. In fact, we even define two semantics: One consid-

ering trees over terminals and non-terminals (without latent annotations), and one considering
strings over terminals.
The semantics for trees defines a weighted tree language for a given wcfg-la. Intuitively,

to get the weight of a tree 𝑡 one considers all possible decorations of this tree with latent
annotations; each decorated tree can be assigned a weight by multiplying up a rule’s weight
for each occurrence of a rule in the decorated tree; the weights of the decorated trees are
summed up to get the weight of 𝑡. However, our formal definition works a bit differently: The
tree 𝑡 is traversed from root to leaves and at each position all possible latent annotations are
considered immediately. Considering the distributivity of semirings, it is easy to see that this
approach is equivalent to the intuitive approach. We prefer this definition because it suits our
later proofs better.

Definition 3.2.3 (tree semantics of wcfg-la). Let ℛ be a commutative semiring and 𝐺 =
(𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) an ℛ-wcfg-la. The weighted tree language of 𝐺, denoted by ⟦𝐺⟧U, is defined
as

⟦𝐺⟧U : U𝐺 → ℛ, 𝑡 ↦ {
0 if 𝜎 ∈ 𝛴
∑ℎ∈𝐻 𝐼(𝜎[ℎ]) ⋅ ⟦𝐺⟧laU(ℎ, 𝑡) if 𝜎 ∈ 𝑁

with 𝜎 = 𝑡(𝜀)

where

⟦𝐺⟧laU : 𝐻 × (U𝐺 ∖𝛴) → ℛ,
(ℎ0, 𝑡) ↦ ∑

(ℎ𝑖∈𝐻∣𝑖∈[𝑘])
𝑃(𝜎0[ℎ0] → 𝑤0 𝜎1[ℎ1] 𝑤1 … 𝜎𝑘[ℎ𝑘] 𝑤𝑘) ⋅ ∏

𝑖∈[𝑘]
⟦𝐺⟧laU(ℎ𝑖, 𝑡|𝑠𝑖

)

where2 𝑛 = rk(𝑡), 𝑘 ∈ [𝑛], 𝜎0, …, 𝜎𝑘 ∈ 𝑁, 𝑤0, …, 𝑤𝑘 ∈ 𝛴∗, and (𝑠𝑖 ∈ [𝑛] ∣ 𝑖 ∈ [𝑘]) such that
• 𝜎0 = 𝑡(𝜀),
• 𝑤0𝜎1𝑤1…𝜎𝑘𝑤𝑘 = 𝑡(1)…𝑡(𝑛), and

2 | Note that a summation ∑(ℎ𝑖∈𝐻∣𝑖∈[𝑘]) … has exactly one addend if 𝑘 = 0.

wcfg-la

rule
left-hand side
right-hand side
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Figure 3.1.: Sketch of a tree 𝑡 with ⟦𝐺⟧(𝑡) ≠ 0 for the wcfg-la 𝐺 from Example 3.2.5.

• 𝑠𝑖 is the position of the 𝑖-th occurrence of a symbol from 𝑁 in 𝑤0𝜎1𝑤1…𝜎𝑘𝑤𝑘 for every
𝑖 ∈ [𝑘].

The string semantics of a wcfg-la defines a weighted string language. The weight of a string
is the sum of the weights w.r.t. the tree semantics of the trees with the string as yield.

Definition 3.2.4 (string semantics of wcfg-la). Let ℛ be a complete commutative semiring and
𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) an ℛ-wcfg-la. The weighted string language of 𝐺, denoted by ⟦𝐺⟧S, is
defined as

⟦𝐺⟧S : 𝛴∗ → ℛ, 𝑤 ↦ ∑
𝑡∈U𝐺 : yield𝛴(𝑡)=𝑤

⟦𝐺⟧U(𝑡).

Note that we need a complete semiring in the string case because there can be an infinite
number of trees with the same yield.

From now on we drop the indices from ⟦𝐺⟧U, ⟦𝐺⟧laU and ⟦𝐺⟧S, and just write ⟦𝐺⟧ as it will
always be clear from the context which one is meant.

Example 3.2.5. Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be the ℙ-wcfg-la where

• 𝑁 = {𝛾, 𝜎}, 𝛴 = {𝛼, 𝛽}, 𝐻 = {0, 1},

• 𝐼(𝛾[0]) = 0.5 and 𝐼(𝜎[1]) = 0.5 and everything else is mapped to 0, and

• 𝑃(𝜎[0] → 𝛼 𝛾[0] 𝛽) = 0.5,
𝑃(𝜎[0] → 𝛼 𝜎[1] 𝛽) = 0.5,
𝑃(𝜎[1] → 𝛼 𝜎[0] 𝛽) = 1,
𝑃(𝛾[0] → 𝜀) = 1, and every other rule is mapped to 0.

The grammar assigns a non-zero weight to a tree if it has the form sketched in Figure 3.1,
otherwise the assignedweight is 0. For each string in𝛴∗ there is atmost one non-zeroweighted
tree with the string as yield. For strings we have ⟦𝐺⟧(𝛼2𝑛 𝛽2𝑛) = 0.5𝑛+1 for every 𝑛 ∈ ℕ and
every other string is mapped to 0.
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3.3. Weighted Tree Automata (WTAs)

In this section we recall from the literature the formalism of weighted tree automata (wtas),
which is another formalism to describe specific weighted tree languages. Since wtas are es-
sential for the next chapters, we define many important notions dealing with wtas. We recall
two different, yet equivalent, definitions for the semantics for wtas, which allows us to choose
the more suitable definition in each later application. Let us immediately start with the formal
definition of wtas.

Definition 3.3.1 (wta; cf. Fülöp and Vogler [FV09, Definition 3.2, page 322]). Let ℛ be a com-
mutative semiring. An ℛ-weighted tree automaton (ℛ-wta) is a tuple (𝑄, 𝛴, 𝐼, 𝛥) where

• 𝑄 is an alphabet (of states),
• 𝛴 is a ranked alphabet (of terminals),
• 𝐼 : 𝑄 → ℛ is a mapping (root weights), and
• 𝛥: (⋃𝑘∈ℕ 𝑄 × 𝛴(𝑘) × 𝑄𝑘) → ℛ is a mapping (transition weights).

When we define an ℛ-wta (𝑄, 𝛴, 𝐼, 𝛥) and we have already fixed 𝑄 and 𝛴, then we often
use dom(𝛥) before we define 𝛥 itself. This is legitimate because dom(𝛥) = ⋃𝑘∈ℕ 𝑄 × 𝛴(𝑘) ×
𝑄𝑘 is exclusively determined by 𝑄 and 𝛴. We write wta instead of ℛ-wta if we are not inter-
ested in a particular ℛ.
Let (𝑄, 𝛴, 𝐼, 𝛥) be a wta. Since there are only finitely many 𝑘 ∈ ℕ such that 𝛴(𝑘) ≠ ∅,

we have that dom(𝛥) is finite. For better readability, we denote elements (𝑞0, 𝜎, (𝑞1, …, 𝑞𝑘)) ∈
dom(𝛥) by 𝑞0 → 𝜎(𝑞1, …, 𝑞𝑘) and call them transitions.3 Sometimes, especially in examples,
we fix the weight 𝑤 = 𝛥(𝑞0 → 𝜎(𝑞1, …, 𝑞𝑘)) of a transition by writing “𝑞0

𝑤⟶ 𝜎(𝑞1, …, 𝑞𝑘)”
and the root weight 𝑤 = 𝐼(𝑞) of a state 𝑞 ∈ 𝑄 by writing “ 𝑤⟶ 𝑞”. In examples, weights
that are not explicitly stated are generally assumed to be zero. If we are not interested in the
detailed structure of a transition, we write (𝑞 → 𝜉) ∈ dom(𝛥); note that 𝜉 is a variable and not
a terminal symbol. The left-hand side of 𝑞 → 𝜉 is defined by lhs(𝑞 → 𝜉) = 𝑞; the right-hand
side of 𝑞 → 𝜉 is defined by rhs(𝑞 → 𝜉) = 𝜉.
In the context of wtas and if not stated otherwise, we always assume that ℛ is an arbitrary

commutative semiring. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wta. We define the relation run𝑄,𝛴 ⊆
T𝛴 ×U𝑄 such that (𝑡, 𝑟) ∈ run𝑄,𝛴 iff pos(𝑡) = pos(𝑟). Instead of run𝑄,𝛴 we also write runℳ.
Let (𝑡, 𝑟) ∈ runℳ. We say that 𝑟 is a run of ℳ on 𝑡. Let 𝜌 ∈ pos(𝑡). The transition of 𝑡 and 𝑟
at 𝜌 is defined by trans𝜌(𝑡, 𝑟) = 𝑟(𝜌) → (𝑡(𝜌))(𝑟(𝜌1), …, 𝑟(𝜌𝑘)) where 𝑘 = rk(𝑡|𝜌).
We now define two equivalent semantics for wtas. We define both because that allows us to

respectively choose the more convenient one in later applications.

Definition 3.3.2 (run semantics of wta [cf. FV09, Section 3.2]). Let ℛ be a commutative semir-
ing and ℳ = (𝑄, 𝛴, 𝐼, 𝛥) an ℛ-wta. The weighted tree language of ℳ (by run semantics),
denoted by ⟦ℳ⟧run, is defined as

⟦ℳ⟧run : T𝛴 → ℛ, 𝑡 ↦ ∑
𝑟∈runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧′
run(𝑡, 𝑟)

3 | This notation of transitions is inspired by the notation of rules of regular tree grammars [GS84; GS15, Section 2.3].
Using this notation also for wtas is natural since regular tree grammars are equivalent to tree automata (𝔹-wtas)
[GS84; GS15, Theorem 2.3.6].

wta

transition

left-hand side (lhs)
right-hand side (rhs)

runs of wta (run)

trans

run semantics
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where

⟦ℳ⟧′
run : runℳ → ℛ, (𝑡, 𝑟) ↦ ∏

𝜌∈pos(𝑡)
𝛥(trans𝜌(𝑡, 𝑟)).

To refer to summands of ⟦ℳ⟧run, we define the mapping ⟦ℳ⟧I : runℳ → ℛ such that (𝑡, 𝑟) ↦
𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧′

run(𝑡, 𝑟). We sometimes silently extend ⟦ℳ⟧′
run and ⟦ℳ⟧I to the domain T𝛴 ×U𝑄

and set ⟦ℳ⟧′
run(𝑡, 𝑟) = 0 and ⟦ℳ⟧I(𝑡, 𝑟) = 0 if (𝑡, 𝑟) ∉ runℳ.

Definition 3.3.3 (initial algebra semantics of wta [cf. FV09, Section 3.2]). Let ℛ be a commu-
tative semiring and ℳ = (𝑄, 𝛴, 𝐼, 𝛥) an ℛ-wta. The weighted tree language of ℳ (by initial
algebra semantics), denoted by ⟦ℳ⟧ini, is defined as

⟦ℳ⟧ini : T𝛴 → ℛ, 𝑡 ↦ ∑
𝑞∈𝑄

𝐼(𝑞) ⋅ ⟦ℳ⟧′
ini(𝑞, 𝑡)

where

⟦ℳ⟧′
ini : 𝑄 × T𝛴 → ℛ,

(𝑞, 𝜎(𝑡1, …, 𝑡𝑘)) ↦ ∑
𝑞1,…,𝑞𝑘∈𝑄

𝛥(𝑞 → 𝜎(𝑞1, …, 𝑞𝑘)) ⋅ ∏
𝑖∈[𝑘]

⟦ℳ⟧′
ini(𝑞𝑖, 𝑡𝑖).

It turns out that ⟦ℳ⟧run = ⟦ℳ⟧ini and ⟦ℳ⟧′
ini(𝑞, 𝑡) = ∑𝑟∈runℳ(𝑡) : 𝑟(𝜀)=𝑞⟦ℳ⟧′

run(𝑡, 𝑟) for every
ℛ-wta ℳ = (𝑄, 𝛴, 𝐼, 𝛥), 𝑞 ∈ 𝑄, and 𝑡 ∈ T𝛴 [FV09, p. 324].

Example 3.3.4. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be the ℙ-wta where 𝑄 = {𝑞0, 𝑞1, 𝑞𝛼, 𝑞𝛽} and 𝛴 =
{𝛼(0), 𝛽(0), 𝛾(0), 𝜎(3)}, and 𝐼 and 𝛥 are given by:

1⟶ 𝑞0 𝑞0
0.5⟶ 𝜎(𝑞𝛼, 𝑞1, 𝑞𝛽) 𝑞1

1⟶ 𝜎(𝑞𝛼, 𝑞0, 𝑞𝛽)

𝑞0
0.5⟶ 𝛾 𝑞𝛼

1⟶ 𝛼

𝑞𝛽
1⟶ 𝛽.

Recall that states and transitions that are not mentioned are mapped to 0 by 𝐼 and 𝛥, respec-
tively.

The wta ℳ is visualized on the left-hand side of Figure 3.2. We visualize states by circles
and terminals by boxes. For each non-zero weighted transition there is a box with an arrow
that points to the left-hand side of the transition and if there are states on the right-hand side,
then there are lines connecting the box with those states. The order of the states on the right-
hand side can be read from the graphics by starting at the arrow and collecting the states
connected by lines counterclockwise. The weight of the transition is written next to the box.
Non-zero initial weights are depicted by arrows going out of the respective state. We note that
the arrows in the graphics are directed reversely in comparison to our mathematical notation.
This is because this graphical representation of wtas is inspired by the graphical representation
of functional hypergraphs.

initial algebra semantics
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𝑞0 𝑞1

𝛾 𝜎 𝜎

𝑞𝛼 𝑞𝛽

𝛼 𝛽

1

0.5 1

1 1

0.5
𝜎

𝛼
𝑞𝛼

𝜎

𝛼
𝑞𝛼

𝛾

𝑞0

𝛽

𝑞𝛽

𝑞1

𝛽

𝑞𝛽

𝑞0

Figure 3.2.: Visualization of the wta ℳ and the tree 𝑡 with the run 𝑟 of ℳ on 𝑡 from Exam-
ple 3.3.4.

The wta ℳ assigns the same weights to trees from T𝛴 as the grammar 𝐺 from Example 3.2.5;
𝐺 assigns weight 0 to trees from U𝐺 ∖T𝛴. Consequently, Figure 3.1 also sketches the form of
trees that are assigned a non-zero weight by ℳ.
Consider the tree 𝑡 = 𝜎(𝛼, 𝜎(𝛼, 𝛾, 𝛽), 𝛽). Let 𝑟 ∈ runℳ(𝑡) be the following run of ℳ on 𝑡:

𝑟 = 𝑞0(𝑞𝛼, 𝑞1(𝑞𝛼, 𝑞0, 𝑞𝛽), 𝑞𝛽). The tree and the run are visualized on the right-hand side of
Figure 3.2. In such graphical representations we put the states of a run above the corresponding
position of the tree. We have that ⟦ℳ⟧′

run(𝑡, 𝑟) = 0.52.

From now on we will drop the indices and primes from ⟦ℳ⟧, ⟦ℳ⟧′
run, ⟦ℳ⟧ini and

⟦ℳ⟧′
ini, and just write ⟦ℳ⟧ as it will always be clear from the context which one

is meant. If we use ⟦ℳ⟧ without any arguments, we refer to ⟦ℳ⟧run = ⟦ℳ⟧ini.
Note that we keep writing the superscript of ⟦𝑀⟧I in order to distinguish it from
⟦ℳ⟧ = ⟦ℳ⟧′

run.

Let ℛ be a commutative semiring and 𝛴 be a ranked alphabet. A weighted tree language
ℒ: T𝛴 → ℛ is called recognizable if there is an ℛ-wta ℳ such that ⟦ℳ⟧ = ℒ.
Consider the Boolean semiring 𝔹. For any set 𝐴, a mapping from 𝐴 → 𝔹 can be viewed as

a subset of 𝐴 and vice versa. Therefore 𝔹-wta are equivalent to (unweighted) tree automata,
and for a 𝔹-wta ℳ = (𝑄, 𝛴, 𝐼, 𝛥) we also write 𝐼, 𝛥, and ⟦ℳ⟧ instead of supp(𝐼), supp(𝛥),
and supp(⟦ℳ⟧), respectively, directly viewing these mappings as sets.
Let ℛ be a commutative semiring, ℳ = (𝑄, 𝛴, 𝐼, 𝛥) an ℛ-wta, and let 𝑡 ∈ T𝛴. We say

ℳ accepts 𝑡 if ⟦ℳ⟧(𝑡) ≠ 0, otherwise we say ℳ does not accept 𝑡. It is easy to see that if ℳ
accepts 𝑡, and ℛ is zero-sum free and zero-divisor free, then there is a run 𝑟 ∈ runℳ(𝑡) such
that 𝐼(𝑟(𝜀)) ≠ 0 and 𝛥(trans𝜌(𝑡, 𝑟)) ≠ 0 for every 𝜌 ∈ pos(𝑡).
Let 𝑓: ℛ → 𝔹 be the mapping such that 𝑓(0) = 0 and 𝑓(𝑎) = 1 for every 𝑎 ∈ ℛ ∖ {0}. The

support automaton of ℳ is the 𝔹-wta defined by crisp(ℳ) = (𝑄, 𝛴, 𝐼′, 𝛥′) where 𝐼′(𝑞) =
𝑓(𝐼(𝑞)) for every 𝑞 ∈ 𝑄 and𝛥′(𝜏) = 𝑓(𝛥(𝜏)) for every 𝜏 ∈ dom(𝛥′); in otherwords, viewing
𝐼′ and 𝛥′ as sets, 𝐼′ = supp(𝐼) and 𝛥′ = supp(𝛥). Note that, if ℳ accepts 𝑡, then also
crisp(ℳ) accepts 𝑡. The inverse does not hold for every semiring ℛ, but the following lemma
lists sufficient properties of the semiring such that the inverse does indeed hold. The lemma
is implicitly used in proofs of Fülöp and Vogler [FV09, Theorem 3.12] and Borchardt, Maletti,
Šešelja, Tepavčević, and Vogler [Bor+06, Lemma 3].

recognizable

accept

crisp
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Lemma 3.3.5. Let ℛ be a zero-sum free and zero-divisor free commutative semiring and ℳ an
ℛ-wta. Then ⟦crisp(ℳ)⟧ = supp(⟦ℳ⟧).

Proof. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be the given ℛ-wta. Since ℛ is zero-sum free and zero-divisor
free, it is easy to see that the mapping 𝑓: ℛ → 𝔹 from our definition of support automaton is
a homomorphism [cf. FV09, proof of Theorem 3.12].

Therefore, for every 𝑡 ∈ T𝛴 one can show that ⟦crisp(ℳ)⟧(𝑞, 𝑡) = 𝑓(⟦ℳ⟧(𝑞, 𝑡)) for every
𝑞 ∈ 𝑄 by induction on the structure of 𝑡. Then it is easy to show that ⟦crisp(ℳ)⟧(𝑡) =
𝑓(⟦ℳ⟧(𝑡)) for every 𝑡 ∈ T𝛴. [cf. Bor+06, proof of Lemma 3]

Let us now look at the equation in the lemma. Recall that ⟦crisp(ℳ)⟧ is just a short notation
for supp(⟦crisp(ℳ)⟧). By what we have shown above, this is equal to supp(𝑓(⟦ℳ⟧)), and
since 𝑓 obviously does not change the support, this is equal to supp(⟦ℳ⟧). q.e.d.

Letℳ1 = (𝑄1, 𝛴, 𝐼1, 𝛥1) andℳ2 = (𝑄2, 𝛴, 𝐼2, 𝛥2) be twoℛ-wta over the same semiring
ℛ and over the same ranked alphabet 𝛴. We call ℳ1 a sub-wta of ℳ2 if

• 𝑄1 ⊆ 𝑄2,
• 𝐼1(𝑞) ∈ {0, 𝐼2(𝑞)} for every 𝑞 ∈ 𝑄1, and
• 𝛥1(𝜏) ∈ {0, 𝛥2(𝜏)} for every 𝜏 ∈ dom(𝛥1).

Note that the last two conditions imply supp(𝐼1) ⊆ supp(𝐼2) and supp(𝛥1) ⊆ supp(𝛥2); if
ℛ = 𝔹, then this implication is even an equivalence. Also note that this property implies that
⟦ℳ1⟧(𝑡, 𝑟) ∈ {0, ⟦ℳ2⟧(𝑡, 𝑟)} for every (𝑡, 𝑟) ∈ runℳ1

.
We call ℳ1 and ℳ2 isomorphic if there is a bijection 𝑓: 𝑄1 → 𝑄2 such that 𝐼1(𝑞) =

𝐼2(𝑓(𝑞)) for every 𝑞 ∈ 𝑄1 and 𝛥1(𝑞 → 𝜎(𝑞1, …, 𝑞𝑘)) = 𝛥2(𝑓(𝑞) → 𝜎(𝑓(𝑞1), …, 𝑓(𝑞𝑘)))
for every (𝑞 → 𝜎(𝑞1, …, 𝑞𝑘)) ∈ dom(𝛥1). Note that if ℳ1 and ℳ2 are isomorphic, then
⟦ℳ1⟧ = ⟦ℳ2⟧, ⟦ℳ1⟧(𝑞, 𝑡) = ⟦ℳ2⟧(𝑓(𝑞), 𝑡) for every 𝑞 ∈ 𝑄1 and 𝑡 ∈ T𝛴, and the bijection 𝑓
can be extended to runs such that ⟦ℳ1⟧(𝑡, 𝑟) = ⟦ℳ2⟧(𝑡, 𝑓(𝑟)) for every (𝑡, 𝑟) ∈ runℳ.

Let ℳ1, …, ℳ𝑛 be ℛ-wtas where 𝑛 ∈ ℕ. We say a property 𝑃 holds for ℳ1, …, ℳ𝑛 up
to isomorphism if there are ℛ-wtas ℳ′

1, …, ℳ′
𝑛 such that ℳ𝑖 is isomorphic to ℳ′

𝑖 for every
𝑖 ∈ [𝑛] and 𝑃 holds for ℳ′

1, …, ℳ′
𝑛.

3.4. Equivalences of WCFG-LAs and WTAs

In this section we compare the power of wcfg-las and wtas to describe weighted tree languages
and weighted string languages. We show that their power to describe weighted tree languages
is identical if only ranked trees are considered (Theorem 3.4.9). We also show that their power
to describe both a weighted tree and string language simultaneously is the same except for
some corner cases (Theorem 3.4.10).

Before we come to the final theorems, we have to show several lemmas.

Converting Terminals to Non-Terminals and Vice Versa in a WCFG-LA We start by
showing that in a wcfg-la any terminal can be transformed into a non-terminal and, vice versa,
also some non-terminals can be transformed into terminals without changing the weights of
trees.

We first show how terminals can be converted into non-terminals.

sub-wta

isomorphic

up to isomorphism
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Construction 3.4.1. Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be an ℛ-wcfg-la, 𝛼 ∈ 𝛴, and ℎ𝛼 ∈ 𝐻. We
construct the ℛ-wcfg-la 𝐺′ = (𝑁 ′, 𝛴′, 𝐻, 𝐼′, 𝑃 ′) where

• 𝑁 ′ = 𝑁 ∪ {𝛼},

• 𝛴′ = 𝛴 ∖ {𝛼},

• 𝐼′(𝛼[ℎ]) = 0 and 𝐼′(𝜎[ℎ]) = 𝐼(𝜎[ℎ]) for every 𝜎 ∈ 𝑁 and ℎ ∈ 𝐻, and

• 𝑃 ′(𝑟′) =

⎧{{
⎨{{
⎩

𝑃(𝑟) if there is 𝑟 ∈ dom(𝑃 ) such that 𝑟′ results from 𝑟 by
replacing every occurrence of 𝛼 in 𝑟 by 𝛼[ℎ𝛼],

1 if 𝑟′ = (𝛼[ℎ𝛼] → 𝜀), and
0 otherwise.

Lemma 3.4.2. For every ℛ-wcfg-la 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) and 𝛼 ∈ 𝛴 there is an ℛ-wcfg-
la 𝐺′ = (𝑁 ′, 𝛴′, 𝐻, 𝐼′, 𝑃 ′) such that 𝑁 ′ = 𝑁 ∪{𝛼} and 𝛴′ = 𝛴 ∖{𝛼}, and for every 𝑡 ∈ U𝐺′

we have

⟦𝐺′⟧(𝑡) = {
⟦𝐺⟧(𝑡) if 𝑡 ∈ U𝐺,
0 otherwise.

The ℛ-wcfg-la 𝐺′ can be effectively determined by Construction 3.4.1.

Proof. Note that U𝐺 ⊆ U𝐺′ . We consider four different cases for 𝑡 ∈ U𝐺′ :

• 𝑡 ∈ 𝛴′: By Definition 3.2.3 we have ⟦𝐺⟧(𝑡) = ⟦𝐺′⟧(𝑡) = 0.

• 𝑡 = 𝛼: By Definition 3.2.3 and by construction of 𝐼′, we have ⟦𝐺⟧(𝑡) = ⟦𝐺′⟧(𝑡) = 0.

• 𝑡 ∈ U𝐺′ ∖U𝐺: This case implies that 𝑡 has is an inner node that is labeled by 𝛼. Since
𝑃 ′(𝛼[ℎ] → 𝑤) = 0 for every ℎ ∈ 𝐻 and 𝑤 ≠ 𝜀, we have ⟦𝐺′⟧(𝑡) = 0.

• 𝑡 = 𝜎(𝑡1, …, 𝑡𝑛) ∈ U𝐺 ∖𝛴: Let 𝜎𝑖 = 𝑡𝑖(𝜀) for every 𝑖 ∈ [𝑛]. We prove by complete
induction on the height of 𝑡 that ⟦𝐺′⟧(ℎ, 𝑡) = ⟦𝐺⟧(ℎ, 𝑡) for every ℎ ∈ 𝐻. To ease
the notation, but without loss of generality, we assume that there are 𝑘, ℓ ∈ {0, …, 𝑛}
such that 𝑘 ≤ ℓ, 𝜎1, …, 𝜎𝑘 ∈ 𝑁, 𝜎𝑘+1 = … = 𝜎ℓ = 𝛼, and 𝜎ℓ+1, …, 𝜎𝑛 ∈ 𝛴′. For every
ℎ0 ∈ 𝐻 we have

⟦𝐺′⟧(ℎ0, 𝑡)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[ℓ])

𝑃 ′(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎ℓ[ℎℓ] 𝜎ℓ+1…𝜎𝑛) ⋅ ∏
𝑖∈[ℓ]

⟦𝐺′⟧(ℎ𝑖, 𝑡𝑖)
(by Definition 3.2.3)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[𝑘])

∑
(ℎ𝑖∈𝐻∣𝑖∈{𝑘+1,…,ℓ})

𝑃 ′(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘]
𝜎𝑘+1[ℎ𝑘+1]…𝜎ℓ[ℎℓ]
𝜎ℓ+1…𝜎𝑛] )

⋅ ∏
𝑖∈[𝑘]

⟦𝐺′⟧(ℎ𝑖, 𝑡𝑖) ⋅ ∏
𝑖∈{𝑘+1,…,ℓ}

⟦𝐺′⟧(ℎ𝑖, 𝑡𝑖)
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= ∑
(ℎ𝑖∈𝐻∣𝑖∈[𝑘])

𝑃 ′(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘] 𝜎𝑘+1[ℎ𝛼]…𝜎ℓ[ℎ𝛼] 𝜎ℓ+1…𝜎𝑛)

⋅ ∏
𝑖∈[𝑘]

⟦𝐺′⟧(ℎ𝑖, 𝑡𝑖) ⋅ ∏
𝑖∈{𝑘+1,…,ℓ}

⟦𝐺′⟧(ℎ𝛼, 𝑡𝑖)⏟⏟⏟⏟⏟
1

(by Construction 3.4.1)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[𝑘])

𝑃(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘] 𝜎𝑘+1…𝜎𝑛) ⋅ ∏
𝑖∈[𝑘]

⟦𝐺⟧(ℎ𝑖, 𝑡𝑖)

(by Construction 3.4.1 and induction hypothesis)

= ⟦𝐺⟧(ℎ0, 𝑡) (by Definition 3.2.3)

Since all initial weights that are relevant for 𝑡 are the same in 𝐺 and 𝐺′, we can conclude
that ⟦𝐺′⟧(𝑡) = ⟦𝐺⟧(𝑡).

These cases cover every element of U𝐺′ , hence, the lemma holds. q.e.d.

We now show how specific non-terminals can be converted into terminals.
Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be an ℛ-wcfg-la and 𝜎 ∈ 𝑁. The non-terminal 𝜎 is called non-

initial if 𝐼(𝜎[ℎ]) = 0 for every ℎ ∈ 𝐻. It is called leaf-only if 𝑃(𝜎[ℎ] → 𝑤) = 0 for every
ℎ ∈ 𝐻 and 𝑤 ≠ 𝜀.

Construction 3.4.3. Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be an ℛ-wcfg-la and 𝛼 ∈ 𝑁 leaf-only and non-
initial. We construct the ℛ-wcfg-la 𝐺′ = (𝑁 ′, 𝛴′, 𝐻, 𝐼′, 𝑃 ′) where

• 𝑁 ′ = 𝑁 ∖ {𝛼},

• 𝛴′ = 𝛴 ∪ {𝛼},

• 𝐼′(𝜎[ℎ]) = 𝐼(𝜎[ℎ]) for every 𝜎 ∈ 𝑁 ′ and ℎ ∈ 𝐻, and

• for every 𝑟 = (𝜎[ℎ] → 𝑠1…𝑠𝑛) with 𝜎 ∈ 𝑁 ′, ℎ ∈ 𝐻, 𝑛 ≥ 0, and 𝑠1, …, 𝑠𝑛 ∈ (𝑁 ′ ×𝐻)∪
𝛴′, letting 𝑋 = {𝑖 ∈ [𝑛] ∣ 𝑠𝑖 = 𝛼} we set

𝑃 ′(𝑟) = ∑
(ℎ𝑖∈𝐻∣𝑖∈𝑋)

𝑃(𝜎[ℎ] → 𝑠′
1…𝑠′

𝑛) ⋅ ∏
𝑖∈𝑋

𝑃(𝛼[ℎ𝑖] → 𝜀)

where 𝑠′
𝑖 = 𝛼[ℎ𝑖] if 𝑖 ∈ 𝑋, and 𝑠′

𝑖 = 𝑠𝑖 otherwise.

Lemma 3.4.4. For every ℛ-wcfg-la 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) and every leaf-only and non-initial
non-terminal 𝛼 ∈ 𝑁 there is an ℛ-wcfg-la 𝐺′ = (𝑁 ′, 𝛴′, 𝐻, 𝐼′, 𝑃 ′) such that 𝑁 ′ = 𝑁 ∖ {𝛼}
and 𝛴′ = 𝛴 ∪ {𝛼}, and for every 𝑡 ∈ U𝐺 we have

⟦𝐺⟧(𝑡) = {
⟦𝐺′⟧(𝑡) if 𝑡 ∈ U𝐺′ ,
0 otherwise.

The ℛ-wcfg-la 𝐺′ can be effectively determined by Construction 3.4.3.

Proof. Note that U𝐺′ ⊆ U𝐺. We consider four different cases for 𝑡 ∈ U𝐺′ :

• 𝑡 ∈ 𝛴: By Definition 3.2.3 we have ⟦𝐺⟧(𝑡) = ⟦𝐺′⟧(𝑡) = 0.

non-initial non-terminal
leaf-only non-terminal
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• 𝑡 = 𝛼: Since 𝛼 is non-initial, we have ⟦𝐺⟧(𝑡) = 0, and by Definition 3.2.3 we have
⟦𝐺′⟧(𝑡) = 0.

• 𝑡 ∈ U𝐺 ∖U𝐺′ : This case implies that 𝑡 has an inner node that is labeled by 𝛼. Since 𝛼 is
leaf-only, we have ⟦𝐺⟧(𝑡) = 0.

• 𝑡 = 𝜎(𝑡1, …, 𝑡𝑛) ∈ U𝐺′ ∖𝛴′: Let 𝜎𝑖 = 𝑡𝑖(𝜀) for every 𝑖 ∈ [𝑛]. We prove by complete
induction on the height of 𝑡 that ⟦𝐺′⟧(ℎ, 𝑡) = ⟦𝐺⟧(ℎ, 𝑡) for every ℎ ∈ 𝐻. To ease the
notation, but without loss of generality, assume that there are 𝑘, ℓ ∈ [𝑛] such that 𝑘 ≤ ℓ,
𝜎1, …, 𝜎𝑘 ∈ 𝑁 ′, 𝜎𝑘+1 = … = 𝜎ℓ = 𝛼, and 𝜎ℓ+1, …, 𝜎𝑛 ∈ 𝛴. We have

⟦𝐺′⟧(ℎ0, 𝑡)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[𝑘])

𝑃 ′(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘] 𝜎𝑘+1…𝜎𝑛) ⋅ ∏
𝑖∈[𝑘]

⟦𝐺′⟧(ℎ𝑖, 𝑡𝑖)
(by Definition 3.2.3)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[𝑘])

( ∑
(ℎ𝑖∈𝐻∣𝑖∈{𝑘+1,…,ℓ})

𝑃(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘]
𝜎𝑘+1[ℎ𝑘+1]…𝜎ℓ[ℎℓ]
𝜎ℓ+1…𝜎𝑛 )

⋅ ∏
𝑖∈{𝑘+1,…,ℓ}

𝑃(𝛼[ℎ𝑖] → 𝜀)) ⋅ ∏
𝑖∈[𝑘]

⟦𝐺⟧(ℎ𝑖, 𝑡𝑖)

(by definition of 𝑃 ′ and induction hypothesis)

= ∑
(ℎ𝑖∈𝐻∣𝑖∈[ℓ])

𝑃(𝜎[ℎ0] → 𝜎1[ℎ1]…𝜎ℓ[ℎℓ] 𝜎ℓ+1…𝜎𝑛) ⋅ ∏
𝑖∈[ℓ]

⟦𝐺⟧(ℎ𝑖, 𝑡𝑖)

(by commutativity and distributivity)

= ⟦𝐺⟧(ℎ0, 𝑡) (by Definition 3.2.3)

Since all initial weights that are relevant for 𝑡 are the same in 𝐺 and 𝐺′, we can conclude
that ⟦𝐺′⟧(𝑡) = ⟦𝐺⟧(𝑡).

These cases cover every element of U𝐺, hence, the lemma holds. q.e.d.

ConvertingWCFG-LAs intoWTAs andVice Versa Sincewtas use ranked alphabets while
wcfg-las use alphabets without ranks, we need the following notion for our next results. Let
𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be an ℛ-wcfg-la. We call 𝐺 ranked if we can assign ranks to the symbols
in 𝑁 such that 𝑃(𝜎[ℎ] → 𝑤) ≠ 0 implies that |𝑤| = rk(𝜎) for every rule 𝜎[ℎ] → 𝑤. If 𝐺 is
ranked, it is easy to see that ⟦𝐺⟧(𝑡) = 0 for every 𝑡 ∈ U𝑁(𝛴) ∖ T𝑁∪𝛴, assuming rank 0 for
symbols from 𝛴. An example of a ranked wcfg-la is the grammar 𝐺 in Example 3.2.5.

Construction 3.4.5. Let 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) be a ranked ℛ-wcfg-la such that 𝛴 = ∅. We
construct the ℛ-wta ℳ = (𝑄, 𝑁, 𝐼, 𝛥) where 𝑄 = 𝑁 × 𝛨 and for every 𝜎, 𝜎′ ∈ 𝑁, ℎ ∈ 𝐻,
and 𝑞1, …, 𝑞𝑘 ∈ 𝑄 with 𝑘 = rk(𝜎) we let

𝛥((𝜎′, ℎ) → 𝜎(𝑞1, …, 𝑞𝑘)) = {
𝑃(𝜎[ℎ] → 𝑞1…𝑞𝑘) if 𝜎 = 𝜎′ and
0 otherwise.

ranked wcfg-la
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Lemma 3.4.6. For every ranked ℛ-wcfg-la 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ) such that 𝛴 = ∅, there is
an ℛ-wta ℳ such that ⟦ℳ⟧(𝑡) = ⟦𝐺⟧(𝑡) for every 𝑡 ∈ T𝑁. The ℛ-wta ℳ can be effectively
determined by Construction 3.4.5.

Proof. We use the initial algebra semantics of wtas to prove the lemma. Let 𝑡 = 𝜎(𝑡1, …, 𝑡𝑘) ∈
T𝑁 and let 𝜎𝑖 = 𝑡𝑖(𝜀) for every 𝑖 ∈ [𝑘]. By construction, we have ⟦ℳ⟧((𝜎′, ℎ), 𝑡) = 0 for every
𝜎′ ∈ 𝑁 ∖ {𝜎} and ℎ ∈ 𝐻. By complete induction on the height of 𝑡, we have for every ℎ ∈ 𝐻

⟦ℳ⟧((𝜎, ℎ), 𝑡)
= ∑

(𝜎′
1,ℎ1),…,(𝜎′

𝑘,ℎ𝑘)∈𝑄
𝛥((𝜎, ℎ) → 𝜎((𝜎′

1, ℎ1), …, (𝜎′
𝑘, ℎ𝑘))) ⋅ ∏

𝑖∈[𝑘]
⟦ℳ⟧((𝜎′

𝑖, ℎ𝑖), 𝑡𝑖)
(by Definition 3.3.3)

= ∑
ℎ1,…,ℎ𝑘∈𝐻

𝛥((𝜎, ℎ) → 𝜎((𝜎1, ℎ1), …, (𝜎𝑘, ℎ𝑘))) ⋅ ∏
𝑖∈[𝑘]

⟦ℳ⟧((𝜎𝑖, ℎ𝑖), 𝑡𝑖)

(by Construction 3.4.5 and semiring properties for 0)
= ∑

ℎ1,…,ℎ𝑘∈𝐻
𝑃(𝜎[ℎ] → 𝜎1[ℎ1]…𝜎𝑘[ℎ𝑘]) ⋅ ∏

𝑖∈[𝑘]
⟦𝐺⟧(ℎ𝑖, 𝑡𝑖)

(by Construction 3.4.5 and induction hypothesis)
= ⟦𝐺⟧(ℎ, 𝑡). (by Definition 3.2.3)

Since the initial weights of 𝐺 are copied from ℳ, we have ⟦ℳ⟧(𝑡) = ⟦𝐺⟧(𝑡). q.e.d.

Construction 3.4.7. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wta. We construct the ℛ-wcfg-la 𝐺 =
(𝑁, ∅, 𝑄, 𝐼, 𝑃 ) where 𝑁 = ⋃𝑘∈ℕ 𝛴(𝑘) and for every 𝑘 ∈ ℕ, 𝜎0, …, 𝜎𝑘 ∈ 𝑁, and 𝑞0, …, 𝑞𝑘 ∈ 𝑄
we let

𝑃(𝜎0[𝑞0] → 𝜎1[𝑞1]…𝜎𝑘[𝑞𝑘]) = {
𝛥(𝑞0 → 𝜎0(𝑞1, …, 𝑞𝑘)) if 𝑘 = rk(𝜎0) and
0 otherwise.

Lemma 3.4.8. Let 𝛴 be a ranked alphabet. For every ℛ-wta ℳ with terminal alphabet 𝛴 there
is a ranked ℛ-wcfg-la 𝐺 such that ⟦𝐺⟧(𝑡) = ⟦ℳ⟧(𝑡) for every 𝑡 ∈ T𝛴. The ℛ-wcfg-la 𝐺 can be
effectively determined by Construction 3.4.7.

Proof. Obviously, 𝐺 is ranked by construction. We use the initial algebra semantics of wtas to
prove the rest of the lemma. Let 𝑡 = 𝜎(𝑡1, …, 𝑡𝑘) ∈ T𝛴 and let 𝜎𝑖 = 𝑡𝑖(𝜀) for every 𝑖 ∈ [𝑘]. By
complete induction on the height of 𝑡, we have for every 𝑞 ∈ 𝑄

⟦𝐺⟧(𝑞, 𝑡) = ∑
𝑞1,…,𝑞𝑘∈𝑄

𝑃(𝜎[𝑞] → 𝜎1[𝑞1]…𝜎𝑘[𝑞𝑘]) ⋅ ∏
𝑖∈[𝑘]

⟦𝐺⟧(𝑞𝑖, 𝑡𝑖) (by Definition 3.2.3)

= ∑
𝑞1,…,𝑞𝑘∈𝑄

𝛥(𝑞 → 𝜎(𝑞1, …, 𝑞𝑛)) ⋅ ∏
𝑖∈[𝑘]

⟦ℳ⟧(𝑞𝑖, 𝑡𝑖)

(by Construction 3.4.7 and induction hypothesis)
= ⟦ℳ⟧(𝑞, 𝑡). (by Definition 3.3.3)

Since the initial weights of 𝐺 are copied from ℳ, we have ⟦𝐺⟧(𝑡) = ⟦ℳ⟧(𝑡). q.e.d.
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Equivalences of WCFG-LAs and WTAs We are now prepared for the final results of this
section. We start with the power of wtas and wcfg-las only considering weighted tree lan-
guages, i.e., ignoring the string semantics of wcfg-las for now.

Theorem 3.4.9. Let ℛ be a commutative semiring and 𝛴 a ranked alphabet. For every weighted
tree language ℒ: T𝛴 → ℛ, the following are equivalent:

• There is an ℛ-wta ℳ such that ⟦ℳ⟧ = ℒ.
• There is a ranked ℛ-wcfg-la 𝐺 such that ⟦𝐺⟧(𝑡) = ℒ(𝑡) for every 𝑡 ∈ T𝛴.

Proof. The theorem is a direct consequence of Lemmas 3.4.2, 3.4.6 and 3.4.8. q.e.d.

Recall that wcfg-las also have a semantics for strings (cf. Definition 3.2.4). By extending this
definition, one can easily define a corresponding weighted string language for any weighted
tree language: Let 𝛴 be an alphabet, 𝛤 ⊆ 𝛴, ℛ be a complete commutative semiring, and
ℒ: U𝛴 → ℛ. We define the weighted string language Yield𝛤(ℒ): 𝛤 ∗ → ℛ such that

Yield𝛤(ℒ)(𝑤) = ∑
𝑡∈T𝛴 : yield𝛤(𝑡)=𝑤

ℒ(𝑡)

for every 𝑤 ∈ 𝛤 ∗. In this way one can also associate a weighted string language with a wta.
The terminals 𝛤 that are considered for the strings can be chosen freely. However, in the string
semantics of a wcfg-la the symbols that are allowed to appear in the strings are already fixed
by the distinction between terminals and non-terminals. But Lemma 3.4.2 and Lemma 3.4.4
allow to change this fixation: Given a wcfg-la 𝐺 = (𝑁, 𝛴, 𝐻, 𝐼, 𝑃 ), one may choose symbols
𝛤 ⊆ 𝑁 ∪ 𝛴 that shall be considered for strings. If each non-terminal in 𝛤 ∖ 𝛴 is non-initial
and leaf-only, then a wcfg-la 𝐺′ = (𝑁 ∖ 𝛤, 𝛤 , 𝐻, 𝐼 ′, 𝑃 ′) such that ⟦𝐺⟧U = ⟦𝐺′⟧U can be
constructed. Hence, Theorem 3.4.9 can be extended by the consideration of weighted string
languages:

Theorem 3.4.10. Let ℛ be a complete commutative semiring, 𝛴 a ranked alphabet, and 𝛤 ⊆
𝛴(0). For every weighted tree language ℒ: T𝛴 → ℛ such that ℒ(𝑡) = 0 for every 𝑡 ∈ 𝛤, the
following are equivalent:

• There is an ℛ-wta ℳ such that ⟦ℳ⟧ = ℒ.
• There is a ranked ℛ-wcfg-la 𝐺 such that ⟦𝐺⟧S = Yield𝛤(ℒ) and ⟦𝐺⟧(𝑡) = ℒ(𝑡) for every

𝑡 ∈ T𝛴.

Proof. Assume there is a ranked ℛ-wcfg-la 𝐺0 such that ⟦𝐺0⟧(𝑡) = ℒ(𝑡) for every 𝑡 ∈ T𝛴. By
Lemma 3.4.2 we can find a ranked ℛ-wcfg-la 𝐺1 where each terminal of 𝐺0 is converted into a
non-terminalwithout changing the tree semantics. Since𝐺1 is ranked and ⟦𝐺1⟧(𝑡) = ℒ(𝑡) = 0
for every 𝑡 ∈ 𝛤, we can assume w.l.o.g. that each non-terminal in 𝛤 is non-initial w.r.t. 𝐺1.
Hence, by Lemma 3.4.4 we can construct a ranked ℛ-wcfg-la 𝐺 from 𝐺1 without changing the
tree semantics and such that ⟦𝐺⟧S = Yield𝛤(ℒ).
The rest is analogous to Theorem 3.4.9. q.e.d.

By Theorem 3.4.10, the power of wcfg-las and wtas to describe weighted tree and string
languages is practically the same. Since wtas are much easier to deal with in a formal context,
we will prefer wtas over wcfg-las in the rest of this work.

Yield
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4. Training of WTAs

In this chapter we recall modeling and training from the literature [cf. Bis06].
Based on three EM algorithms [DLR77] for cfgs [LY90; Pre04; CS07], we present
adaptions of these algorithms for wtas. We argue that the three presented algo-
rithms are equivalent.

Let us start this chapter with the following hypothetical situation, where we use many in-
tuitive notions that we will formalize afterwards.

Imagine a device that produces a continuous stream of data. We may observe as
much data as we like. The data is not completely random, i.e., the device prefers
some data over other data. That means the device has some internal representa-
tion of how the data shall preferably look like. However, we only have a limited
knowledge about the inner workings of the device. Let us therefore call this device
the opaque device.

Despite our limited knowledge about the opaque device, we want to build another
device that can simulate the opaque device, i.e., a device that produces data with
seemingly the same preferences like the opaque device. Let us call this new device
the transparent device. We can use our limited knowledge about the opaque device
to build a prototype of the transparent device. Since we are not yet sure about all
the details, we equip the prototype withmany control knobs for tuning its behavior.

We now take some data produced by the opaque device and call it training data. We
analyze the training data carefully and use our insights to tune the control knobs
of the prototype. This tuning is called training and it shall configure the prototype
in such a way that it prefers producing data that is similar to the training data.
Since we know about the inner workings of our prototype, we know how turning
a control knob affects the output of the prototype. In fact, we may even tell how
well the prototype can mimic the training data just by examining the positions of
the control knobs.

As soon aswe find the best configuration of the control knobs tomimic the training
data, we swiftly grab some hot glue to fix the control knobs of the prototype, put it
into a shiny glass case, and – voilà – we are done building our transparent device.
If we have done everything right, the transparent device will produce data with
the same preferences as the opaque device. To check if our transparent device
works correctly, we can analyze some new data from the opaque device and check
by inspecting the positions of the control knobs if the transparent device can also
mimic this new data well.

limited knowledge

opaque device

transparent device
prototype
control knobs

training data

training
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4. Training of WTAs

intuitive notion formal notion

opaque device unknown probability distribution
limited knowledge assumptions
prototype model
transparent device training result
control knobs parameters
training data training data
tuning/training training
quality of mimicking reward function

Table 4.1.: Juxtaposition of intuitive and formal notions regarding training.

The text above includes all important ideas that we need to understand training. Table 4.1
summarizes the used intuitive notions and relates them to the formal notions we are about to
introduce. However, note that our formalization is still very sketchy. For a rigorous introduc-
tion for this topic, we refer to other literature (cf. Related Work).

Modeling and Training Let 𝐷 be a set and let 𝑝 be an unknown probability distribution
over 𝐷, i.e., a mapping 𝑝: 𝐷 → [0, 1] such that ∑𝑑∈𝐷 𝑝(𝑑) = 1. We call the elements of
𝐷 data. Although 𝑝 is unknown, assume that we can randomly draw an element from 𝐷
arbitrarily often according to the probability distribution 𝑝. By making assumptions about 𝑝,
we define a model, which is a family 𝑀 = (𝑝𝜃 ∣ 𝜃 ∈ 𝛩) of probability distributions. The
elements of the index set 𝛩 are called parameters. So, each parameter 𝜃 ∈ 𝛩 determines
a probability distribution 𝑝𝜃. We want to find the parameter 𝜃 ∈ 𝛩 such that 𝑝𝜃 is most
similar to 𝑝. Since 𝑝 is unknown, we estimate this similarity by analyzing data that was drawn
according to 𝑝. This is formalized by a reward function 𝜌: 𝐷∗ × 𝑴 → ℝ where 𝑴 is the set
of all probability distributions over 𝐷, and we call a value assigned by 𝜌 a reward.1 A greater
reward means a greater similarity between the two arguments. Now, given a finite sequence
of data 𝑑1…𝑑𝑛 ∈ 𝐷∗ that we call training data, we identify a parameter ̂𝜃 ∈ 𝛩 such that
the reward 𝜌(𝑑1…𝑑𝑛, 𝑝 ̂𝜃) is maximized, i.e., we calculate ̂𝜃 = argmax𝜃∈𝛩 𝜌(𝑑1…𝑑𝑛, 𝑝𝜃). This
search for ̂𝜃 is called training. If the training data was drawn according to 𝑝, then we wish that

̂𝜃 = 𝜃, where 𝜃 induces 𝑝𝜃, which is most similar to 𝑝 (see above). However, since the training
data is random and only finite, and therefore cannot fully represent 𝑝 in general, we can only
hope that 𝑝 ̂𝜃 is similar to 𝑝𝜃. It is therefore important to use much training data because more
data can represent 𝑝 better.

Formally we assumed that we can draw elements from 𝐷 arbitrarily often according to 𝑝.
However, in practice we typically have only a fixed finite sequence of data that was drawn
according to 𝑝. Nevertheless, this data (or only parts of it) can be used as training data as
described above.

Let us now see how modeling and training can be applied to natural language and wtas. Let

1 | Note that the reward function is not arbitrary. With a rigorous formalization, the reward function would be
induced by the assumptions and the model. However, we skip the details because we will focus on training.

model
parameters

reward function
reward

training data

training
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𝐷 = T𝛴 for some ranked alphabet 𝛴 such that 𝐷 contains all syntax trees of natural language
sentences. The probability distribution 𝑝 could for example be implicitly defined by a group of
linguists that write down syntax trees for natural language sentences. Since they are linguists,
we assume that they mostly produce syntax trees that are linguistically sensible; however, we
do not (yet) know what makes a tree linguistically sensible. By training, we now want to find
a way to describe the linguistically sensible trees. For that purpose we first have to define a
model. We assume, a wta is well-suited to capture what makes a tree linguistically sensible.
So we define a model 𝑀 by making use of wtas. In fact, we only consider probabilistic wtas: A
probabilistic wta, besides other properties, is a ℙ-wta and the weights that it assigns to trees
form a probability distribution. We now use probabilistic wtas with terminal alphabet 𝛴 as
parameters 𝛩 and our model 𝑀 consists of the probability distributions that can be defined by
probabilistic wtas.
As the reward function, we use the likelihood : Given a sequence of data from 𝐷 and a proba-

bility distribution over𝐷, the likelihood is the product of the probabilities of the data according
to the distribution. We can now take a sequence 𝑡1…𝑡𝑛 of trees produced by the linguists and
start training. The training result is a probabilistic wta ̂𝜃 ∈ 𝛩 such that the likelihood for the
trees 𝑡1…𝑡𝑛 according to 𝑝 ̂𝜃 is maximal.

Overfitting and Underfitting Recall our goal to find the parameter 𝜃 ∈ 𝛩 such that 𝑝𝜃
is most similar to 𝑝. However, because 𝑝 is unknown, by training we instead search for the
parameter ̂𝜃 such that the reward for a finite sequence of training data and 𝑝 ̂𝜃 is maximal.
Hence, the training result ̂𝜃 is tailored to the training data and not so much to 𝑝. It is therefore
likely that 𝑝 ̂𝜃 assigns much higher probabilities to data that was seen in the training data than
𝑝 or 𝑝𝜃 does. Such an inadvertently large bias of the training result towards the training data
is called overfitting. In the worst case, 𝑝 ̂𝜃 assigns zero probability to all data that was not seen
in the training.
Whether we end up with overfitting depends on the amount of training data and on the

model. Consider two different models 𝑀1 and 𝑀2 for the same data 𝐷 such that 𝑀1 contains
all probability distributions of 𝑀2 and some more. That means, the training works similar for
both models, but if we use 𝑀1, then the training has more probability distributions to choose
from as if we use𝑀2. We say𝑀1 has a largermodel complexity than𝑀2. Obviously, overfitting
is more likely for models with higher complexity. That does not mean that one should reduce
the model complexity as much as possible because then you might be left with probability
distributions that neither fit the training data nor 𝑝. This is then called underfitting.
Recall our example model from above, which was defined using probabilistic wtas. It turns

out that with this model we will always end up with overfitting. Because the training data
is finite, it is always possible to find a probabilistic wta that assigns non-zero probabilities
exclusively to trees that were seen in the training data. Hence, the model complexity has to be
reduced. This can for example be done by limiting the allowed number of states of the wtas.
To reduce the complexity even further, one might fix the set of states and only allow non-zero
weights for a predefined set of transitions.

overfitting

model complexity

underfitting
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underfitting overfitting
model complexity
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reward for training data

reward for hold-out data

chosen model

Figure 4.1.: Intuitive comparison of the reward for the training data and the reward for the
hold-out data w.r.t. the training results for different model complexities.

Generalization and Hold-Out Validation We have seen that overfitting occurs when 𝑝 ̂𝜃
has a bias towards the training data. What we want instead is that 𝑝 ̂𝜃 also assigns non-zero
probability to data that was not part of the training data; this is called generalization of the
training data. The less probability we assign to the training data in total, the more we gener-
alize. But if we generalize too much, then we end up with underfitting. So the goal is to find a
model that allows for just the right amount of generalization such that the training can find a
probability distribution that fits 𝑝 and not just the training data.

Unfortunately, we cannot directly compare a training result to 𝑝. But we can consider new
data that was drawn according to 𝑝 and determine the reward for this new data and the training
result. A high reward is then an indicator for the right amount of generalization.

In practice we typically do not have access to an unlimited stream of data that is distributed
according to 𝑝. However, we can take the available data and divide it into two parts. We use
one part as training data and call the other part hold-out data because we will hold this part
out of the training. We can now train with different models and for each training result we
can determine the reward for the hold-out data and the training result. We then choose the
training result that gives us the largest reward on the hold-out data. Note that this is typically
different from the training result that gives the largest reward on the training data. Thismethod
is called hold-out validation.

Figure 4.1 gives an intuition about the rewards for the training data and hold-out data for
different model complexities. The higher the model complexity, the larger the reward for the
training data with the respective training result. However, the reward for the hold-out data
with the respective training result reaches a maximum for an intermediate model complexity.
Left to this maximum, i.e. with less model complexity, we tend to underfit; conversely, right to
this maximum, i.e. with more model complexity, we tend to overfit.

Note that besides hold-out validation there are also other methods to check for the right
amount of generalization. For further details we refer to other literature.

This Chapter In this chapter we will concentrate on a training method called maximum
likelihood estimation. We focus on a special case of maximum likelihood estimation for wtas. As
a practical implementation for training in this special case, we show different, yet equivalent,
versions of the EM algorithm.

generalization

hold-out data

hold-out validation
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4.1. Probability Distributions

This chapter is more or less only a collection of facts and observations, which we need in the
subsequent chapters. We will only slightly touch the surface of the discussed topics. To get a
deeper understanding, we suggest to consult, e.g., the literature listed below.

Related Work For a broader overview about modeling, training, and validation, we refer to
Bishop [Bis06].
Our insights about the EM algorithm are based on Dempster, Laird, and Rubin [DLR77], Lari

and Young [LY90], Prescher [Pre04], and Corazza and Satta [CS07]. We deliberately transfer
results from weighted context-free grammars (wcfgs) to wtas. This is legitimate because wtas
can be viewed as special wcfgs: A tree can also be viewed as a string by interpreting the terminal
symbols and the symbols “(”, “)”, and “,” that we use to denote trees as terminal symbols for
strings. Hence, a wta can also be viewed as a device that assigns weights to strings. With this
view it is easy to transform a wta into a wcfg that assigns the same weights to strings.
The wcfgs that are considered in the mentioned literature exclusively use weights from the

probability semiring ℙ, and, similar as for probabilistic wtas, the weights must define certain
probability distributions. In the literature such wcfgs go by the names of probabilistic context-
free grammars (pcfgs) and stochastic context-free grammars (scfgs).

4.1. Probability Distributions

In this work we will often use wtas as devices to assign probabilities to trees and runs. For this
purpose we need some very basic probability theory. In this section we introduce just enough
details to understand this work.2

Let 𝐴 be a countable set. A probability distribution (over 𝐴) is a mapping 𝑝: 𝐴 → [0, 1], such
that ∑𝑎∈𝐴 𝑝(𝑎) = 1.
Let 𝐴1 and 𝐴2 be countable sets and 𝑝 a probability distribution over 𝐴1 × 𝐴2. Note that

the mapping 𝑝1 : 𝐴1 → [0, 1] where 𝑝1(𝑎1) = ∑𝑎2∈𝐴2
𝑝(𝑎1, 𝑎2) for every 𝑎1 ∈ 𝐴1 is also a

probability distribution. Analogously we can construct a mapping 𝑝2 : 𝐴2 → [0, 1] that is also
a probability distribution. Calculating 𝑝1 or 𝑝2 is calledmarginalization and 𝑝1 and 𝑝2 are called
marginal distributions. Depending on the context, wemay view 𝑝 as the probability distribution
𝑝1 or 𝑝2; we then just write 𝑝(𝑎1) and 𝑝(𝑎2) instead of 𝑝1(𝑎1) and 𝑝2(𝑎2), respectively.
Let 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2. If 𝑝(𝑎2) ≠ 0, then the conditional probability of 𝑎1 given 𝑎2 is

defined by 𝑝(𝑎1 ∣ 𝑎2) = 𝑝(𝑎1,𝑎2)
𝑝(𝑎2) . Analogously, if 𝑝(𝑎1) ≠ 0, then the conditional probability

of 𝑎2 given 𝑎1 is defined by 𝑝(𝑎2 ∣ 𝑎1) = 𝑝(𝑎1,𝑎2)
𝑝(𝑎1) . For every 𝑎2 ∈ 𝐴2, if 𝑝(𝑎2) ≠ 0, then

the mapping 𝑝′
1 : 𝐴1 → [0, 1] where 𝑝′

1(𝑎1) = 𝑝(𝑎1 ∣ 𝑎2) for every 𝑎1 ∈ 𝐴1 is a probability
distribution. Analogously, for every 𝑎1 ∈ 𝐴1, we can construct a mapping 𝑝′

2 : 𝐴2 → [0, 1]
that is also a probability distribution. We denote these probability distributions by 𝑝(⋅ ∣ 𝑎2)
and 𝑝(⋅ ∣ 𝑎1), respectively.

2 | We really avoid diving into the details of probability theory. For example we avoid concepts like random vari-
ables. Nevertheless, all of our notions, definitions, and equations can be translated to proper probability theory
involving random variables.

probability distribution

marginalization
marginal distribution

conditional probability
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4. Training of WTAs

4.2. Maximum Likelihood Estimation

One approach for training is maximum likelihood estimation. In this context, the training data
is represented by a corpus.

Let 𝐴 be a countable set. A corpus (over 𝐴) is a mapping 𝑐 : 𝐴 → ℝ≥0 such that supp(𝑐) is
non-empty and finite. The size of 𝑐 is defined by |𝑐| = ∑𝑎∈supp(𝑐) 𝑐(𝑎). Sometimes we refer to
the values of a corpus by the word counts. Also, for an element 𝑎 ∈ 𝐴 we say that 𝑎 is in the
corpus 𝑐 if 𝑎 ∈ supp(𝑐), i.e., 𝑐(𝑎) ≠ 0.

Let 𝑐 : 𝐴 → ℝ≥0 be a corpus. The empirical distribution of 𝑐 is defined as the probability
distribution 𝑝𝑐 : 𝐴 → [0, 1] where 𝑝𝑐(𝑎) = 𝑐(𝑎)

|𝑐| for every 𝑎 ∈ 𝐴.
Let 𝑝: 𝐴 → [0, 1] be a probability distribution and 𝑐 : 𝐴 → ℝ≥0 a corpus. The likelihood of 𝑐

under 𝑝 is defined by
L(𝑐 ∣ 𝑝) = ∏

𝑎∈supp(𝑐)
𝑝(𝑎)𝑐(𝑎).

Let 𝐴 be a countable set, 𝑐 a corpus over 𝐴, and 𝑀 = (𝑝𝜃 ∣ 𝜃 ∈ 𝛩) be a family of probability
distributions over 𝐴. The3 maximum likelihood estimate from 𝑀 on 𝑐 is defined as

argmax
𝜃∈𝛩

L(𝑝𝜃 ∣ 𝑐).

Theorem 4.2.1 (Prescher [Pre04, Theorem 1]). Let 𝐴 be a countable set, 𝑐 a corpus over 𝐴,
and 𝑀 = (𝑝𝜃 ∣ 𝜃 ∈ 𝛩) be a family of probability distributions over 𝐴. If there is a 𝜃 ∈ 𝛩 such
that 𝑝𝜃 is the empirical distribution of 𝑐, then 𝜃 is the maximum likelihood estimate from 𝑀 on 𝑐.

4.3. Probabilities and WTAs

We now introduce how wtas can be related to probabilities. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a ℙ-wta.
We call ℳ

• out-probabilistic if for every 𝑞 ∈ 𝑄 we have ∑𝜏∈dom(𝛥): lhs(𝜏)=𝑞 𝛥(𝜏) = 1,

• semi-probabilistic if ℳ is out-probabilistic and ∑𝑞∈𝑄 𝐼(𝑞) = 1,

• consistent if ∑𝑡∈T𝛴
⟦ℳ⟧(𝑡) = 1, and

• probabilistic if it is semi-probabilistic and consistent.

That means:
• If ℳ is out-probabilistic, then the transition weights define a probability distribution
over each set of transitions with the same left hand side.

• If ℳ is semi-probabilistic, then additionally the root weights define a probability distri-
bution over the set of states.

3 | Although formally argmax returns a set of results, in the context of maximum likelihood estimation we usually
act as if there is always a single result. In other words, we are already satisfied if we only find one element that
maximizes the likelihood.
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4.4. The EM Algorithm for WTAs

• If ℳ is consistent, then ⟦ℳ⟧ is a probability distribution over T𝛴 and ⟦ℳ⟧I is a proba-
bility distribution over runℳ.

Hence, if ℳ is consistent, then we can use the overloaded notations for probability distribu-
tions also for ⟦ℳ⟧I. With that, we have ⟦ℳ⟧I(𝑡) = ⟦ℳ⟧(𝑡) for every 𝑡 ∈ T𝛴.
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a wta and (𝑡, 𝑟) ∈ runℳ. For every 𝑞 ∈ 𝑄 the frequency of 𝑞 in 𝑟

(on 𝑡) is defined by

f(𝑞 ∣ 𝑟) = f(𝑞 ∣ 𝑡, 𝑟) = |{𝜌 ∈ pos(𝑡) ∣ 𝑟(𝜌) = 𝑞}|.

For every 𝜏 ∈ dom(𝛥) the frequency of 𝜏 in 𝑟 on 𝑡 is defined by

f(𝜏 ∣ 𝑡, 𝑟) = |{𝜌 ∈ pos(𝑡) ∣ trans𝜌(𝑡, 𝑟) = 𝜏}|.

With these ingredients we can easily create a wta from a corpus as follows.

Definition 4.3.1 (read-off wta). Let 𝛴 be a ranked alphabet and 𝑐 a corpus over T𝛴. The read-
off wta of 𝑐 is the ℙ-wta ℳ𝑐 = (𝑄, 𝛴, 𝐼, 𝛥) where

• 𝑄 = {𝑞𝜎 ∣ 𝜎 ∈ 𝛴},

• 𝐼(𝑞𝜎) =
∑𝑡∈supp(𝑐): 𝑡(𝜀)=𝜎 𝑐(𝑡)

|𝑐|
for every 𝑞𝜎 ∈ 𝑄, and

• 𝛥(𝜏) =
∑𝑡∈supp(𝑐) f( 𝜏 ∣ 𝑡, 𝑟𝑡) ⋅ 𝑐(𝑡)
∑𝑡∈supp(𝑐) f(lhs(𝜏) ∣ 𝑡, 𝑟𝑡) ⋅ 𝑐(𝑡)

for every 𝜏 ∈ dom(𝛥).

where 𝑟𝑡 ∈ runℳ𝑐
(𝑡) such that 𝑟𝑡(𝜌) = 𝑞𝑡(𝜌) for every 𝜌 ∈ pos(𝑡).

We note that the read-offwtaℳ𝑐 is probabilistic and that theweights ofℳ𝑐 resemble empirical
distributions: The root weights are the empirical distribution over the root states in the runs
𝑟𝑡 and the transition weights combine the empirical distributions of transitions with the same
left-hand side. However, in general ⟦ℳ𝑐⟧ is not the empirical distribution of 𝑐.

4.4. The EM Algorithm for WTAs

The goal of the EM algorithm is to approximate the maximum likelihood estimate for specific
problem instances. Sincewe concentrate onwtas in ourwork, we considermaximum likelihood
estimation only for the special case of wtas.
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a wta and 𝑐 a corpus over T𝛴. By prob(ℳ) we denote the set of all

probabilisticℙ-wtas (𝑄, 𝛴, 𝐼′, 𝛥′) such that supp(𝐼′) ⊆ supp(𝐼) and supp(𝛥′) ⊆ supp(𝛥). In
other words, prob(ℳ) consists of all probabilistic ℙ-wtas that may be constructed by changing
the non-zero weights of ℳ, which includes changing non-zero weights to zero. Let 𝑀 =
(⟦ℳ′⟧ ∣ ℳ′ ∈ prob(ℳ)) be the family of probability distributions defined by the weights
assigned to trees by thewtas in prob(ℳ). Themaximum likelihood estimate for ℳ on 𝑐, denoted
by mle𝑐(ℳ), is defined as the maximum likelihood estimate from 𝑀 on 𝑐, i.e.,

mle𝑐(ℳ) = argmax
ℳ′∈prob(ℳ)

L(𝑐 ∣ ⟦ℳ′⟧).

frequency of state (f)

frequency of trans. (f)

read-off wta

prob

max. lklhd. est. (mle)
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4. Training of WTAs

Intuitively, by definition of prob(ℳ), this optimization is only allowed to improve the like-
lihood by changing the non-zero weights in the given wta. Note that for wta ℳ𝑐 in Defini-
tion 4.3.1 we already have that ℳ𝑐 ∈ mle𝑐(ℳ𝑐) [Pre04, Theorem 10], i.e., the likelihood of
ℳ𝑐 cannot be improved by just changing the weights. This is due to the strong connection
between the states and the terminals in this wta.

Determiningmle𝑐(ℳ)would be easy if 𝑐was a corpus over runℳ; this is also called a corpus
over complete data. In that case one could simply analyze relative frequencies of states and
transitions similar as in Definition 4.3.1. However, the corpus 𝑐 does only contain trees and
we cannot directly infer associated runs; therefore this is called a corpus over incomplete data.
Only having incomplete data makes it very hard to determine mle𝑐(ℳ).

An approach to approximate mle𝑐(ℳ) is the EM algorithm presented in Algorithm 4.2 (note
the helper function in Algorithm 4.1). Actually, the term “EM algorithm” describes a whole
class of algorithms, which was originally introduced by Dempster, Laird, and Rubin [DLR77].
The abbreviation “EM” stems from the idea to alternately execute an expectation step and a
maximization step. Algorithm 4.2 follows the general idea of an EM algorithm as presented by
Prescher [Pre04, Definition 13]. He also presents an instantiation of this idea to pcfgs [Pre04,
Theorem 11], which is very similar to Algorithm 4.2.

Algorithm 4.1 Helper Function for the EM Algorithms
Input: • corpus 𝐼 over a set of wta states,

• corpus 𝛥 over a set of wta transitions,
Output: • 𝐼′, which is the empirical distribution of 𝐼,

• 𝛥′, which combines the empirical distributions of transitions in 𝛥 with the same
left-hand side

1: function normalize(𝐼, 𝛥)
2: for 𝑞 ∈ dom(𝐼) do
3: 𝐼′(𝑞) ← 𝐼(𝑞)/ ∑𝑞′∈dom(𝐼) 𝐼(𝑞′)

4: for 𝜏 ∈ dom(𝛥) do
5: 𝛥′(𝜏) ← 𝛥(𝜏)/ ∑𝜏′∈dom(𝛥): lhs(𝜏′)=lhs(𝜏) 𝛥(𝜏 ′)

6: return (𝐼′, 𝛥′)

The idea of the EM algorithm is to iteratively adapt the weights of the wta ℳ to improve
the likelihood. In a single iteration, the algorithm first determines a corpus over complete data
based on the current weights. This is called the expectation step or E step for short. Afterwards
it adapts the weights of the wta based on the complete data corpus from the E step. This is
called the maximization step or M step for short. These two steps constitute an iteration of the
EM algorithm, hence, the algorithm repeatedly alternates the E step and the M step.

The likelihood will improve or at least stay the same with every iteration. However, for
practical applications the iteration must be stopped at some point. To decide when to stop, one
could use ad hoc criteria like stopping as soon as the improvement in the likelihood induced
by the current iteration falls under a predefined threshold. Another idea is to also track the
changes of the likelihood for some hold-out data and stop as soon as the likelihood on the
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4.4. The EM Algorithm for WTAs

Algorithm 4.2The EM Algorithm in the Style of Prescher [Pre04]
Input: • alphabet 𝛴,

• corpus 𝑐 over T𝛴,
• probabilistic ℙ-wta ℳ0 = (𝑄, 𝛴, 𝐼0, 𝛥0) such that L(𝑐 ∣ ⟦ℳ0⟧) > 0,

Output: • sequence ℳ0, ℳ1, ℳ2, … of probabilistic ℙ-wtas such that
L(𝑐 ∣ ⟦ℳ0⟧) ≤ L(𝑐 ∣ ⟦ℳ1⟧) ≤ L(𝑐 ∣ ⟦ℳ2⟧) ≤ …

1: for 𝑖 ← 0, 1, 2, … do
2: for 𝑡 ∈ supp(𝑐) do ▷ E step
3: for 𝑟 ∈ runℳ𝑖

(𝑡) do
4: 𝑓(𝑡, 𝑟) ← 𝑐(𝑡) ⋅ ⟦ℳ𝑖⟧I(𝑟 ∣ 𝑡)
5: initialize 𝐼 and 𝛥 with zeros ▷ M step
6: for 𝑡 ∈ supp(𝑐) do
7: for 𝑟 ∈ runℳ𝑖

(𝑡) do
8: 𝐼(𝑟(𝜀)) ← 𝐼(𝑟(𝜀)) + 𝑓(𝑡, 𝑟)
9: for 𝜌 ∈ pos(𝑡) do
10: 𝜏 ← trans𝜌(𝑡, 𝑟)
11: 𝛥(𝜏) ← 𝛥(𝜏) + 𝑓(𝑡, 𝑟)
12: (𝐼𝑖+1, 𝛥𝑖+1) ← normalize(𝐼, 𝛥) ▷ cf. Algorithm 4.1
13: ℳ𝑖+1 ← (𝑄, 𝛴, 𝐼𝑖+1, 𝛥𝑖+1)

Algorithm 4.3The EM Algorithm in the Style of Lari and Young [LY90]
Input/Output: as in Algorithm 4.2
1: for 𝑖 ← 0, 1, 2, … do
2: for 𝑞 ∈ 𝑄, 𝑡 ∈ supp(𝑐), 𝜌 ∈ pos(𝑡) do
3: calculate outsideℳ𝑖

(𝑞 ∣ 𝑡|𝜌) and insideℳ𝑖
(𝑞 ∣ 𝑡|𝜌) for later use

4: for 𝜏 = 𝑞0 → 𝜎(𝑞1, …, 𝑞𝑘) ∈ dom(𝛥𝑖) do
5: 𝛥(𝜏) ← ∑𝑡∈supp(𝑐) 𝑐(𝑡) ⋅ 1

⟦ℳ𝑖⟧(𝑡)
⋅ ∑𝜌∈pos(𝑡) :

𝑡(𝜌)=𝜎
outsideℳ𝑖

(𝑞0 ∣ 𝑡|𝜌) ⋅ 𝛥𝑖(𝜏) ⋅ ∏𝑗∈[𝑘] insideℳ𝑖
(𝑞𝑗 ∣ 𝑡|𝜌𝑗)

6: for 𝑞 ∈ 𝑄 do
7: 𝐼(𝑞) ← ∑𝑡∈supp(𝑐) 𝑐(𝑡) ⋅ 1

⟦ℳ𝑖⟧(𝑡) ⋅ 𝐼𝑖(𝑞) ⋅ insideℳ𝑖
(𝑞 ∣ 𝑡)

8: (𝐼𝑖+1, 𝛥𝑖+1) ← normalize(𝐼, 𝛥) ▷ cf. Algorithm 4.1
9: ℳ𝑖+1 ← (𝑄, 𝛴, 𝐼𝑖+1, 𝛥𝑖+1)

Algorithm 4.4The EM Algorithm in the Style of Corazza and Satta [CS07]
Input/Output: as in Algorithm 4.2
1: for 𝑖 ← 0, 1, 2, … do
2: ℳ𝑖+1 ← EMStep𝑐(ℳ𝑖) ▷ cf. Definition 4.6.5
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4. Training of WTAs

hold-out data starts falling. This is similar to hold-out validation, which we presented in the
introduction of this chapter.

We now present some useful properties of the EM algorithm.

Lemma 4.4.1 (cf. Sánchez and Benedí [SB97, Theorem 4.1] or Chi and Geman [CG98]). Every
wta in the output of Algorithm 4.2 is probabilistic.

Lemma 4.4.2 (cf. Prescher [Pre04, Theorem 11] and Dempster, Laird, and Rubin [DLR77, The-
orem 1]). For the output of Algorithm 4.2, we have that L(𝑐 ∣ ⟦ℳ𝑖⟧) ≤ L(𝑐 ∣ ⟦ℳ𝑖+1⟧) for every
𝑖 ∈ ℕ.

By definition a likelihood is at most 1, hence, by Lemma 4.4.2 the sequence of likelihoods
that corresponds to the sequence of wtas in the output of Algorithm 4.2 must converge to
some value. In fact, the sequence even converges to a critical point (i.e., local minimum, local
maximum, or saddle point) [cf. Pre01a; Pre01b]. However, it is not guaranteed that the sequence
converges to a global maximum.

Lemma 4.4.3. For the output of Algorithm 4.2, we have for every 𝑖 ∈ ℕ that
• 𝐼𝑖(𝑞) = 0 implies 𝐼𝑖+1(𝑞) = 0 for every 𝑞 ∈ 𝑄 and
• 𝛥𝑖(𝜏) = 0 implies 𝛥𝑖+1(𝜏) = 0 for every 𝜏 ∈ dom(𝛥𝑖).

Proof. In line 4 of the algorithm, it is easy to see that 𝑓(𝑡, 𝑟) = 0 if 𝐼𝑖(𝑟(𝜀)) = 0 or if there is
a position 𝜌 ∈ pos(𝑡) such that 𝛥𝑖(trans𝜌(𝑡, 𝑟)) = 0. By examining the following lines of the
algorithm, it is also easy to see that in line 12we have that also 𝐼(𝑟(𝜀)) = 0 or𝛥(trans𝜌(𝑡, 𝑟)) =
0, respectively. The lemma follows by the definition of normalize. q.e.d.

In the following sections we will introduce alternative formulations of the EM algorithm for
wtas. They will help our investigations in the next chapters.

4.5. Inside and Outside Weights

Based on the inside and outside weights, we show in Algorithm 4.3 an alternative formulation
of the EM algorithm in Algorithm 4.2. It works analogously to the algorithm presented by Lari
and Young [LY90, page 41]. They present an EM algorithm for pcfgs4 in Chomsky normal form.
Before we present the alternative EM algorithm (Algorithm 4.3), we introduce the inside and
outside weights. Although we introduce them for general complete semirings, we will actually
only use them for the probability semiring ℙ.

Let ℛ be a commutative and complete semiring. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wta and
𝑞 ∈ 𝑄. The inside weight of 𝑞 in ℳ is defined by

insideℳ(𝑞) = ∑
(𝑡,𝑟)∈runℳ : 𝑟(𝜀)=𝑞

⟦ℳ⟧(𝑡, 𝑟).

Put into words, insideℳ(𝑞) is the sum of the weights of all trees with runs of ℳ with root
symbol 𝑞. Note that the root weights are not included.

4 | What we call a pcfg is called a stochastic context-free grammar (scfg) by Lari and Young [LY90].

inside weight (inside)
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4.6. Adaption of the Estimation of Corazza and Satta [CS07] to WTAs

For the definition of the outside weights, we have to extend some notions of wtas to contexts.
We define runs for contexts analogously to runs for trees: The relation c-run𝑄,𝛴 ⊆ C𝛴 ×U𝑄
is defined such that (𝑐, 𝑟) ∈ c-run𝑄,𝛴 iff pos(𝑐) = pos(𝑟). Instead of c-run𝑄,𝛴 we also write
c-runℳ. For every 𝑞 ∈ 𝑄, by c-run𝑞

𝑄,𝛴 we denote the subset {(𝑐, 𝑟) ∈ c-run𝑄,𝛴 ∣ ∀𝜌 ∈
pos(𝑐) : 𝑐(𝜌) = 𝑥 ⟹ 𝑟(𝜌) = 𝑞}, i.e., we only consider runs that have the symbol 𝑞 at
the position of the 𝑥 in the context. Also, we extend the notions ⟦ℳ⟧run and ⟦ℳ⟧′

run (cf.
Definition 3.3.2) to contexts by assuming 𝛥(𝑞 → 𝑥) = 1 for every 𝑞 ∈ 𝑄.
The outside weight of 𝑞 in ℳ is defined by

outsideℳ(𝑞) = ∑
(𝑐,𝑟)∈c-run𝑞

ℳ

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧(𝑐, 𝑟).

Put into words, outsideℳ(𝑞) is the sum of the weights of all contexts and runs that have the
symbol 𝑞 at that position in the run where the context has the 𝑥.
Intuitively, to calculate the inside weights, we start at a specific state and “dive into” any tree

and run starting at that state. Conversely, for the outside weights we start “outside” of any tree
with the root weights and try to reach a specific state.
The definitions above take any tree or context into account to calculate the inside or outside

weights. However, for the EM algorithm we need a restriction to specific trees or contexts. Let
𝑞 ∈ 𝑄 and 𝑡 ∈ T𝛴. The inside weight of 𝑞 in ℳ restricted to 𝑡 is defined by

insideℳ(𝑞 ∣ 𝑡) = ∑
𝑟∈runℳ(𝑡) : 𝑟(𝜀)=𝑞

⟦ℳ⟧(𝑡, 𝑟).

Note that insideℳ(𝑞 ∣ 𝑡) = ⟦ℳ⟧′
ini(𝑞, 𝑡) (cf. Definition 3.3.3). Now let 𝑞 ∈ 𝑄 and 𝑐 ∈ C𝛴. The

outside weight of 𝑞 in ℳ restricted to 𝑐 is defined by

outsideℳ(𝑞 ∣ 𝑐) = ∑
𝑟∈c-run𝑞

ℳ(𝑐)
𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧(𝑐, 𝑟).

Note that for every 𝑐 ∈ C𝛴 and 𝑡 ∈ T𝛴 we have

⟦ℳ⟧(𝑐 ⋅ 𝑡) = ∑
𝑞∈𝑄

outsideℳ(𝑞 ∣ 𝑐) ⋅ insideℳ(𝑞 ∣ 𝑡).

Also note that completeness of the semiring is not required in the restricted case since all sums
are finite.
Using inside and outside weights, we define Algorithm 4.3. This algorithm uses the same

input as Algorithm 4.2. Moreover, it is an EM algorithm [cf. Pre01a; Pre01b] so it also has the
same output as Algorithm 4.2. Hence, Algorithm 4.2 and Algorithm 4.3 are equivalent in the
function they compute.

4.6. Adaption of the Estimation of Corazza and Satta [CS07] to
WTAs

In this section we introduce the expected value and the cross entropy, which is tightly con-
nected to the likelihood. Based on that, we again reformulate the EM algorithm in Algo-
rithm 4.2; the reformulation is shown in Algorithm 4.4. For that purpose we transfer some

c-run

outside w. (outside)

inside weight (inside)

outside w. (outside)
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4. Training of WTAs

results of Corazza and Satta [CS07] for pcfgs to wtas. One important result shows how to esti-
mate the weights of a ℙ-wta ℳ based on a probability distribution 𝑝 over runℳ such that the
cross-entropy between 𝑝 and ⟦ℳ⟧ is minimized (Lemma 4.6.3). Finally we will show how the
inside and outside weights are connected to expected values.

Let 𝑝: 𝐴 → [0, 1] be a probability distribution and 𝑓: 𝐴 → ℝ a mapping. The expected value
of 𝑓 under 𝑝 is defined by5

E𝑝(𝑓) = ∑
𝑎∈supp(𝑝)

𝑝(𝑎) ⋅ 𝑓(𝑎).

We only consider the support of 𝑝 to avoid undefined products like 0 ⋅ ∞ (e.g. in the definition
of cross-entropy below). Often we define 𝑓 inline; then we use the notation E𝑝(𝜆𝑎.𝑓(𝑎)).

Let 𝑝 and 𝑝′ be probability distributions over a countable set 𝐴. The cross-entropy between 𝑝
and 𝑝′, denoted by H(𝑝 ∥ 𝑝′), is a value in ℝ≥0 ∪ {∞} defined as

H(𝑝 ∥ 𝑝′) = E𝑝(𝜆𝑎. log 1
𝑝′(𝑎)

) = − ∑
𝑎∈supp(𝑝)

𝑝(𝑎) ⋅ log 𝑝′(𝑎). [CS07, Equation 4]

Since we overloaded the notation of probability distributions, 𝑝 and 𝑝′ do not necessarily have
to be probability distributions over 𝐴; it is enough if they induce marginal distributions over
𝐴. If it is not clear which marginal distributions are meant, then we explicitly mention 𝐴 by
writing H𝐴(𝑝 ∥ 𝑝′).

The cross-entropy and the likelihood are tightly connected, which is shown in the following
lemma.

Lemma 4.6.1. Let 𝐴 be a countable set, 𝑝 a probability distribution over 𝐴, and 𝑐 a corpus over
𝐴. If 𝑝𝑐 is the empirical distribution of 𝑐, then

H(𝑝𝑐 ∥ 𝑝) = − log L(𝑝𝑐 ∣ 𝑝) = − 1
|𝑐|

⋅ log L(𝑐 ∣ 𝑝).

Its proof makes use of the following property of the likelihood.

Lemma 4.6.2. Let 𝐴 be a countable set, 𝑝 a probability distribution over 𝐴, and 𝑐 and 𝑐𝑠 corpora
over 𝐴, such that 𝑐𝑠(𝑎) = 𝑠 ⋅ 𝑐(𝑎) for every 𝑎 ∈ 𝐴 and some 𝑠 > 0. Then we have

L(𝑐𝑠 ∣ 𝑝) = L(𝑐 ∣ 𝑝)𝑠 and, equivalently, log L(𝑐𝑠 ∣ 𝑝) = 𝑠 ⋅ log L(𝑐 ∣ 𝑝).

In the remainder of this section, we use the notation 1𝑃 for some predicate 𝑃. This is an
abbreviation defined as

1𝑃 = {
1 if 𝑃 is true,
0 if 𝑃 is false.

As advertised in the introduction of this section, we now show how to estimate the weights
of a wta based on a probability distribution over its runs.

5 | With proper probability theory, the expected value would be defined for real-valued random variables. In this
context, 𝑝 would actually be a random variable 𝔸: 𝛺 → 𝐴 and E𝑝(𝑓) is then the expected value of the random
variable 𝑓 ∘ 𝔸.

expected value (E)

cross-entropy

proven on page 167

proven on page 167
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4.6. Adaption of the Estimation of Corazza and Satta [CS07] to WTAs

Lemma 4.6.3 (Corazza and Satta [CS07, Equation 9]). Let 𝑄 be an alphabet, 𝛴 a ranked alpha-
bet, and 𝑝 a probability distribution over run𝑄,𝛴. Let ℳ̂ = (𝑄, 𝛴, ̂𝐼, ̂𝛥) where for every 𝑞 ∈ 𝑄
and 𝑞 → 𝜉 ∈ dom( ̂𝛥)

̂𝐼(𝑞) = E𝑝(𝜆(𝑡, 𝑟).1𝑟(𝜀)=𝑞) and ̂𝛥(𝑞 → 𝜉) =
E𝑝(𝜆(𝑡, 𝑟). f(𝑞 → 𝜉 ∣ 𝑡, 𝑟))
E𝑝(𝜆(𝑡, 𝑟). f( 𝑞 ∣ 𝑡, 𝑟))

.

Then
ℳ̂ = argmin

ℳ=(𝑄,𝛴,𝐼,𝛥):
ℳ is a probabilistic ℙ-wta

HT𝛴
(𝑝 ∥ ⟦ℳ⟧).

Note that by Lemma 4.6.1 minimizing the entropy is equivalent to maximizing the likelihood.
Also note that, if the probability distribution over run𝑄,𝛴 is given by a wta, then the expected
frequencies of transitions and states are related as follows.

Lemma 4.6.4 (Corazza and Satta [CS07, Equation 16]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a probabilistic
ℙ-wta. Then

E⟦ℳ⟧I(𝜆(𝑡, 𝑟).1𝑟(𝜀)=𝑞) = 𝐼(𝑞)

for every 𝑞 ∈ 𝑄 and

E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)) = 𝛥(𝑞 → 𝜉) ⋅ E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝑞 ∣ 𝑡, 𝑟))

for every 𝑞 → 𝜉 ∈ dom(𝛥).

The next definition gives us the main building block of Algorithm 4.4.

Definition 4.6.5 (Corazza and Satta [CS07, Equation 42]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a prob-
abilistic ℙ-wta, 𝑝1 a probability distribution over T𝛴, and 𝑝2 a probability distribution over
runℳ.6 We define EMStep𝑝2

𝑝1
(ℳ) as the wta (𝑄, 𝛴, ̂𝐼, ̂𝛥) where

̂𝐼(𝑞) = E𝑝1
(𝜆𝑡.E𝑝2(⋅∣𝑡)(𝜆𝑟.1𝑟(𝜀)=𝑞)) and

̂𝛥(𝑞 → 𝜉) =
E𝑝1

(𝜆𝑡.E𝑝2(⋅∣𝑡)(𝜆𝑟. f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)))
E𝑝1

(𝜆𝑡.E𝑝2(⋅∣𝑡)(𝜆𝑟. f( 𝑞 ∣ 𝑡, 𝑟)))
.

Instead of EMStep𝑝2
𝑝1

(ℳ) we also write EMStep𝑝2
𝑐 (ℳ) if 𝑐 is a corpus and 𝑝1 is the empirical

distribution of 𝑐. Furthermore, instead of EMStep⟦ℳ⟧I
𝑐 (ℳ) we also write just EMStep𝑐(ℳ).

Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a probabilistic ℙ-wta and 𝑐 : T𝛴 → ℝ≥0 be a corpus. Then calcu-
lating EMStep𝑐(ℳ) resembles an iteration of the EM-Algorithm with corpus 𝑐 and initial wta
ℳ [CS07, Section 7.2]. This gives us Algorithm 4.4. Also note that in the definition of EMStep
the terms E𝑝2(⋅∣𝑡)(𝜆𝑟.1𝑟(𝜀)=𝑞) and E𝑝2(⋅∣𝑡)(𝜆𝑟. f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)) clearly resemble the E-step as
originally defined by Dempster, Laird, and Rubin [DLR77, Equation 2.2].
If ℳ = EMStep𝑐(ℳ), then we call ℳ an EM fixpoint w.r.t. 𝑐.

6 | In fact, we only need the conditional probabilities 𝑝2(𝑟 ∣ 𝑡) for runs 𝑟 and trees 𝑡 where 𝑝1(𝑡) ≠ 0. However,
for our work we can keep the formalities simple and can demand that 𝑝2 is a probability distribution over runℳ.

EMStep
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4. Training of WTAs

Lemma 4.6.6 (Corazza and Satta [CS07, Equation 41]). Let 𝑄 be an alphabet, 𝛴 a ranked al-
phabet, and 𝑝 a probability distribution over T𝛴.

Let 𝑓 be the mapping from the set of all probabilistic ℙ-wtas with state set 𝑄 and terminal
alphabet 𝛴 to ℝ≥0 ∪ {∞} such that 𝑓(ℳ) = H(𝑝 ∥ ⟦ℳ⟧). If a wta ℳ is a critical point (i.e.,
local minimum, local maximum, or saddle point) of 𝑓, then ℳ is an EM fixpoint w.r.t. 𝑝.

Finally we show how some expected values can be expressed in terms of inside and outside
weights.

Lemma 4.6.7. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a probabilistic ℙ-wta. For every 𝑞 ∈ 𝑄 and 𝜏 = 𝑞0 →
𝜎(𝑞1, …, 𝑞𝑘) ∈ dom(𝛥) we have

• E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝑞 ∣ 𝑡, 𝑟)) = outsideℳ(𝑞) ⋅ insideℳ(𝑞),

• E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝜏 ∣ 𝑡, 𝑟)) = outsideℳ(𝑞0) ⋅ 𝛥(𝜏) ⋅ ∏
𝑖∈[𝑘]

insideℳ(𝑞𝑖),

and for every 𝑞 and 𝜏 as above and every 𝑡 ∈ T𝛴 we have

• E⟦ℳ⟧I(⋅∣𝑡)(𝜆𝑟. f(𝑞 ∣ 𝑡, 𝑟)) = 1
⟦ℳ⟧(𝑡)

⋅ ∑
𝜌∈pos(𝑡)

outsideℳ(𝑞 ∣ 𝑡|𝜌) ⋅ insideℳ(𝑞 ∣ 𝑡|𝜌), and

• E⟦ℳ⟧I(⋅∣𝑡)(𝜆𝑟. f(𝜏 ∣ 𝑡, 𝑟))

= 1
⟦ℳ⟧(𝑡)

⋅ ∑
𝜌∈pos(𝑡) :

𝑡(𝜌)=𝜎

outsideℳ(𝑞0 ∣ 𝑡|𝜌) ⋅ 𝛥(𝜏) ⋅ ∏
𝑖∈[𝑘]

insideℳ(𝑞𝑖 ∣ 𝑡|𝜌𝑖).

By this lemma it is easy to see that Algorithm 4.3 and Algorithm 4.4 are equivalent in the
function they compute.

proven on page 168
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5. State Splitting and Merging

In this chapter the training approach from the following paper is rigorously for-
malized in order to prove some of its properties:
Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.

“Learning accurate, compact, and interpretable tree annotation” [Pet+06]

In the previous chapter, we introduced the EM algorithm for training a ℙ-wta on a tree
corpus. We saw that the EM algorithm can only adapt the non-zero weights of an already
existing wta ℳ (cf. Lemma 4.4.3), which is reflected in the underlying model 𝑀 = (⟦ℳ′⟧ ∣
ℳ′ ∈ prob(ℳ)) (cf. Section 4.4). Hence, the model complexity is determined by the initial
wta ℳ. However, the appropriate model complexity to prevent underfitting and overfitting
is typically unknown. Therefore we introduced the approach to try different models and to
compare the respective training results based on some hold-out data. Still, since there are a lot
of different models, we cannot try out each one of them.
In this chapter we will present an approach to iteratively adapt the model complexity by

modifying the wta that is given to the EM algorithm. As training data, we use a corpus over
trees. The idea is to start with a low model complexity and to increase the complexity in small
steps. So we start with a wta ℳ0 that has only a few states, e.g., the read-off wta for the corpus.
We then iterate the following steps, which are also depicted in Figure 5.1, starting with the
counter 𝑖 = 0:

1. The wta ℳ′
1 is created by duplicating each state of ℳ𝑖. We say, each state of ℳ𝑖 is split

into two new states. The transition weights of ℳ𝑖 are appropriately distributed to define
the transition weights of ℳ′

1.

2. The wta ℳ′
2 results from the application of the EM algorithm to ℳ′

1 and the corpus.

ℳ𝑖 split ℳ′
1

EM corpus EM

ℳ′
3 merge ℳ′

2

𝑖 ≔ 0

𝑖 ≔ 𝑖 + 1

Figure 5.1.: Basic idea of the state splitting and merging algorithm (Algorithm 5.1, page 73).
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3. The wta ℳ′
3 is created from ℳ′

2 by undoing selected splits of states from step 1. In
step 1 each state was split into two new states; in the current step the two states can
be replaced by a single state again. We say, a pair of states is merged into a single state.
The splits that are undone are those that do not contribute much to the likelihood of the
corpus under ⟦ℳ′

2⟧. The transition weights of ℳ′
2 are appropriately combined to define

the transition weights of ℳ′
3.

4. The wta ℳ𝑖+1 results from the application of the EM algorithm to ℳ′
3 and the corpus.

The counter 𝑖 is incremented.

These steps are iterated resulting in a sequence ℳ0, ℳ1, ℳ2, … of wtas. We call this approach
the state splitting and merging algorithm.

You might have noticed that the merging step works against our goal to increase the model
complexity. However, this step helps to keep the number of states in a practically manageable
range. Also, since merging only undoes recent splits, we have that ℳ𝑖+1 has at least as many
states as ℳ𝑖.

This Chapter In Section 5.1 we formalize the ideas of splitting and merging states of wtas
and show simple properties of these operations. We use an arbitrary commutative semiring
where possible and the probability semiring where needed. In Section 5.2 we present the state
splitting and merging algorithm (Algorithm 5.1), which we intuitively introduced above. We
also present ourmain theorem of this chapter (Theorem 5.2.2), where we show the development
of the likelihood in an iteration of the algorithm. In Section 5.2.1 we investigate two ways
of dealing with the weights while merging. In Section 5.2.2 we show how our formalization
relates to the Berkeley Parser, which is an implementation of the state splitting and merging
algorithm by Petrov, Barrett, Thibaux, and Klein [Pet+06].

RelatedWork The state splitting andmerging algorithmwas originally presented by Petrov,
Barrett,Thibaux, and Klein [Pet+06] forℙ-wcfg-las and is repeated in later publications [PK07b;
Pet09]. For our formal considerations, we used wtas instead wcfg-las. This is legitimate because
wtas and wcfg-las are equally powerful (cf. Section 3.4). We decided for wtas because we find
them easier to deal with in a formal context.

The key to the success of the state splitting and merging algorithm is the merge step because
it keeps the number of states in a practically manageable range. Earlier approaches created
different grammars by splitting the states of a base grammar into a different, but respectively
fixed, number of states and trained these grammars independently [MMT05; Pre05].

Instead of splitting every state and undoing unfavorable splits afterwards by merging, there
are also ideas to select only some states for splitting and go without merging [DE06].

A resulting wta of the state splitting and merging algorithm is typically used for parsing
sentences in natural language processing. Besides training, parsing is also implemented in
the Berkeley Parser [Pet+06]. There are also other parser implementations, e.g., Egret,1 which
claims to be a reimplementation of the Berkeley Parser, and BUBS parser2 [Bod+11; DBR11],

1 | Egret was written by Hui Zhang and was published via Google Code in 2010:
https://code.google.com/archive/p/egret-parser/

2 | BUBS parser on Google Code: https://code.google.com/archive/p/bubs-parser/
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5.1. State Splitting and Merging for Weighted Tree Automata

which focuses on efficiency. In contrast to the Berkeley Parser, these parsers do not implement
the state splitting and merging algorithm.
For two wtas ℳ and ℳ′ where the second resulted from the first by splitting states, we say

that ℳ is coarser than ℳ′, and ℳ′ is finer than ℳ. The state splitting and merging algorithm
outputs a sequence of wtas that get increasingly finer. This fact can be exploited to improve
the efficiency of parsing [PK07a; PK07b]: A sentence is first parsed with a coarse wta, which
is rather cheap because a coarse wta has relatively few states. Afterwards this parsing result
is used to guide parsing with a finer wta, which is more efficient than parsing without such
guidance. This can be iterated several times with increasingly finer wtas. All in all, parsing
with this approach is faster than just parsing with the finest wta directly. This approach is
occasionally called coarse-to-fine parsing. It is revisited in the implementation of the Ckylark
parser [Oda+15], which focuses on minimizing the number of parsing failures, i.e., cases where
no parse tree could be found.
Consider a transition 𝑞 → 𝜎(𝑞, 𝑞) of a wta. Splitting the state 𝑞 into 𝑞0 and 𝑞1 induces a split

of the transition in eight new transitions 𝑞𝑖 → 𝜎(𝑞𝑗, 𝑞𝑘) with 𝑖, 𝑗, 𝑘 ∈ {0, 1}. If after training
for example the transitions 𝑞0 → 𝜎(𝑞0, 𝑞0) and 𝑞0 → 𝜎(𝑞0, 𝑞1) have very similar weights, then
it is a waste of resources to store the weight twice. Instead, one could just store the weight once
for the transition 𝑞0 → 𝜎(𝑞0, 𝑞) while keeping in mind that 𝑞 is a placeholder for 𝑞0 and 𝑞1.
Analogously, if we store a weight for the transition 𝑞1 → 𝜎(𝑞, 𝑞) with the same placeholder 𝑞,
then this represents the weight of the four transitions 𝑞1 → 𝜎(𝑞𝑗, 𝑞𝑘) with 𝑗, 𝑘 ∈ {0, 1}. This
idea allows a memory efficient representation for wtas/wcfg-las resulting from splitting. The
underlying formalism is calledmulti-scale grammars. This efficient representation of transition
weights may already be used while training [PK08].
The state splitting and merging algorithm was also generalized to hypergraphs, which were

then used to represent tree adjoining grammars [OS12]. There are also state splitting and
merging approaches for tree substitution grammars [FVP12; Shi+12].

5.1. State Splitting and Merging for Weighted Tree Automata

In this section we define notions for coarsening and refining the state set of a wta. We call
these notions merging and splitting, respectively. For example, let 𝑞0 and 𝑞1 be states of a
wta. We may replace every occurrence of these two states by 𝑞; we say we merge 𝑞0 and 𝑞1

to 𝑞. We use a mapping 𝜋 to denote the connection between the not yet merged and merged
states: 𝜋(𝑞0) = 𝜋(𝑞1) = 𝑞. The mapping also includes states that are not changed, e.g.,
𝜋(𝑞s) = 𝑞s. This replacement of states of course affects transitions. For example the transition
𝑞s → 𝜎(𝑞1, 𝑞0) would be merged to 𝑞s → 𝜎(𝑞, 𝑞) (cf. Figure 5.2).
We may also consider the inverse of 𝜋 and a wta with the state 𝑞. Then we may split 𝑞

into the states 𝑞0 and 𝑞1 by applying 𝜋−1. Again, we also have to consider transitions. With
𝜋−1, e.g., the transition 𝑞s → 𝜎(𝑞, 𝑞) would be split into 𝑞s → 𝜎(𝑞0, 𝑞0), 𝑞s → 𝜎(𝑞0, 𝑞1),
𝑞s → 𝜎(𝑞1, 𝑞0), and 𝑞s → 𝜎(𝑞1, 𝑞1) (cf. Figure 5.2), i.e., for every combination of the split states
we get a transition.
Now let us formalize this idea. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) and ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be ℛ-wtas

with the same terminal alphabet 𝛴, and let 𝜋: 𝑄′ → 𝑄 be a surjective mapping. Depending
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𝑞

𝜎

𝑞s

split𝜋

merge𝜋

𝑞0 𝑞1

𝜎 𝜎 𝜎 𝜎

𝑞s𝜋

𝜋

Figure 5.2.: Visualization of split𝜋 and merge𝜋 with 𝜋(𝑞0) = 𝜋(𝑞1) = 𝑞 and 𝜋(𝑞s) = 𝑞s.

on our current view, we call 𝜋 an ℳ′-merger (w.r.t. 𝑄) or an ℳ-splitter (w.r.t. 𝑄′).
If we view 𝜋 as amerger, we underline this view bywritingmerge𝜋 instead of 𝜋. We overload

this notion for states, transitions, sets of those, and runs as follows.

merge𝜋 : 𝑄′ → 𝑄, 𝑞′ ↦ 𝜋(𝑞′)
merge𝜋 : dom(𝛥′) → dom(𝛥), 𝑞′

0 → 𝜎(𝑞′
1, … , 𝑞′

𝑘) ↦ 𝜋(𝑞′
0) → 𝜎(𝜋(𝑞′

1), … , 𝜋(𝑞′
𝑘))

merge𝜋 : 𝒫(𝑄′) → 𝒫(𝑄), 𝑄′ ↦ {merge𝜋(𝑞′) ∣ 𝑞′ ∈ 𝑄′}

merge𝜋 : 𝒫(dom(𝛥′)) → 𝒫(dom(𝛥)), 𝛥′ ↦ {merge𝜋(𝜏 ′) ∣ 𝜏 ′ ∈ 𝛥′}
merge𝜋 : U𝑄′ → U𝑄, 𝑟′ ↦ 𝑟 where pos(𝑟) = pos(𝑟′)

and ∀𝜌 ∈ pos(𝑟) : 𝑟(𝜌) = 𝜋(𝑟′(𝜌))

We say that ℳ is a 𝜋-merge of ℳ′ if

supp(𝐼) ⊆ merge𝜋(supp(𝐼′)) and supp(𝛥) ⊆ merge𝜋(supp(𝛥′)).

We call ℳ a faithful 𝜋-merge of ℳ′ if the inclusions above are equalities. In general, there
are several (faithful) 𝜋-merges of ℳ′ because of flexibility in the weights.

Theorem 5.1.1. Let ℳ and ℳ′ be 𝔹-wta, and 𝜋 an ℳ′-merger. If ℳ is a faithful 𝜋-merge
of ℳ′, then ⟦ℳ⟧ ⊇ ⟦ℳ′⟧.

Recall that ⟦ℳ⟧ and ⟦ℳ′⟧ in the theorem are 𝔹-weighted tree languages, which can be viewed
as sets. By Lemma 3.3.5 we immediately get the following corollary.

Corollary 5.1.2. Let ℛ be a zero-sum free and zero-divisor free commutative semiring, ℳ and
ℳ′ be ℛ-wtas, and 𝜋 an ℳ′-merger. If ℳ is a faithful 𝜋-merge of ℳ′, then supp(⟦ℳ⟧) ⊇
supp(⟦ℳ′⟧).

Conversely, if we view 𝜋 as a splitter, we underline this view by writing split𝜋 instead of

merger
splitter
merge

faithful merge

proven on page 171

split
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ℳ1 ℳ2 ℳ3
faithful
𝜋-split

faithful
𝜋-merge

crisp(ℳ1) = crisp(ℳ3)

ℳ1 ℳ2 ℳ3
faithful
𝜋-merge

faithful
𝜋-split

crisp(ℳ1) = crisp(ℳ3)

Figure 5.3.: A faithful 𝜋-split followed by a faithful 𝜋-merge, and vice versa.

𝜋−1. Also, we overload this notion for states, transitions, sets of those, and runs as follows.

split𝜋 : 𝑄 → 𝒫(𝑄′), 𝑞 ↦ 𝜋−1(𝑞)
split𝜋 : dom(𝛥) → 𝒫(dom(𝛥′)), 𝑞0 → 𝜎(𝑞1, … , 𝑞𝑘) ↦ {𝑞′

0 → 𝜎(𝑞′
1, … , 𝑞′

𝑘)
∣ ∀𝑖 ∈ [𝑘] : 𝑞′

𝑖 ∈ split𝜋(𝑞𝑖)}

split𝜋 : 𝒫(𝑄) → 𝒫(𝑄′), 𝑄 ↦ ⋃
𝑞∈𝑄

split𝜋(𝑞)

split𝜋 : 𝒫(dom(𝛥)) → 𝒫(dom(𝛥′)), 𝛥 ↦ ⋃
𝜏∈𝛥

split𝜋(𝜏)

split𝜋 : U𝑄 → U𝑄′ , 𝑟 ↦ merge−1
𝜋 (𝑟)

We say that ℳ′ is a 𝜋-split of ℳ if

supp(𝐼′) ⊆ split𝜋(supp(𝐼)) and supp(𝛥′) ⊆ split𝜋(supp(𝛥)).

We call ℳ′ a full 𝜋-split of ℳ if the inclusions above are equalities. We call ℳ′ a faithful
𝜋-split of ℳ if ℳ is a faithful 𝜋-merge of ℳ′. Again, because of flexibility in the weights,
there are several (full or faithful) 𝜋-splits of ℳ in general. Note that every full split is faithful.
If we only consider faithful merges and splits, then it is easy to see that merging and splitting

can be reversed in the following sense, which is visualized in Figure 5.3:

• Let ℳ1 be a wta, 𝜋 an ℳ1-splitter, ℳ2 a faithful 𝜋-split of ℳ1, and ℳ3 a faithful
𝜋-merge of ℳ2. Then crisp(ℳ3) = crisp(ℳ1).

• Let ℳ1 be a wta, 𝜋 an ℳ1-merger, and ℳ2 a faithful 𝜋-merge of ℳ1. Then there is a
faithful 𝜋-split ℳ3 of ℳ2 such that crisp(ℳ3) = crisp(ℳ1).

Example 5.1.3. Let 𝛴 = {𝜎(2), 𝛾(1), 𝛼(0)} be a ranked alphabet, let 𝑄 = {𝑞s, 𝑞} and 𝑄′ =
{𝑞s, 𝑞0, 𝑞1} be sets of states, and let 𝜋: 𝑄′ → 𝑄 such that

𝜋(𝑞s) = 𝑞s, 𝜋(𝑞0) = 𝑞, and 𝜋(𝑞1) = 𝑞.

Let ℳ1 = (𝑄, 𝛴, 𝐼1, 𝛥1) be a ℙ-wta where 𝐼1 and 𝛥1 are given by:

1/3⟶ 𝑞s
2/3⟶ 𝑞 𝑞s

1⟶ 𝜎(𝑞, 𝑞) 𝑞 1/2⟶ 𝛾(𝑞) 𝑞 1/2⟶ 𝛼 .

full split
faithful split
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Let ℳ2 = (𝑄′, 𝛴, 𝐼2, 𝛥2) be a ℙ-wta where 𝐼2 and 𝛥2 are given by:
1/3⟶ 𝑞s 𝑞s

0.1⟶ 𝜎(𝑞0, 𝑞0) 𝑞0 0.1⟶ 𝛾(𝑞0)
1/3⟶ 𝑞0 𝑞s

0.2⟶ 𝜎(𝑞0, 𝑞1) 𝑞0 0.4⟶ 𝛾(𝑞1) 𝑞0 1/2⟶ 𝛼
1/3⟶ 𝑞1 𝑞s

0.3⟶ 𝜎(𝑞1, 𝑞0) 𝑞1 0.3⟶ 𝛾(𝑞0) 𝑞1 1/2⟶ 𝛼

𝑞s
0.4⟶ 𝜎(𝑞1, 𝑞1) 𝑞1 0.2⟶ 𝛾(𝑞1) .

Let ℳ3 = (𝑄′, 𝛴, 𝐼3, 𝛥3) be a ℙ-wta where 𝐼3 and 𝛥3 are given by:
1/3⟶ 𝑞s 𝑞s

1⟶ 𝜎(𝑞0, 𝑞0) 𝑞0 0⟶ 𝛾(𝑞0)
2/3⟶ 𝑞0 𝑞s

0⟶ 𝜎(𝑞0, 𝑞1) 𝑞0 1/4⟶ 𝛾(𝑞1) 𝑞0 3/4⟶ 𝛼
0⟶ 𝑞1 𝑞s

0⟶ 𝜎(𝑞1, 𝑞0) 𝑞1 7/8⟶ 𝛾(𝑞0) 𝑞1 1/8⟶ 𝛼

𝑞s
0⟶ 𝜎(𝑞1, 𝑞1) 𝑞1 0⟶ 𝛾(𝑞1) .

We observe the following:
• ℳ1 is a faithful 𝜋-merge of ℳ2,
• ℳ1 is a faithful 𝜋-merge of ℳ3,
• ℳ3 is a faithful 𝜋-split of ℳ1, but not a full 𝜋-split, and
• ℳ2 is a full 𝜋-split of ℳ1 and therefore also a faithful 𝜋-split.

The split and merge of the 𝜎-transitions is also depicted in Figure 5.2. Some of the properties
above are violated in the following examples.

• If, e.g., 𝐼3(𝑞0) was 0 or 𝛥3(𝑞s → 𝜎(𝑞0, 𝑞0)) was 0 while assuming the other weights
were left unchanged, then ℳ1 would not be a faithful merge of ℳ3 and ℳ3 would not
be a faithful split of ℳ1.

• If any of the weights of ℳ2 given above were 0, then ℳ2 would not be a full 𝜋-split of
ℳ1.

• If, e.g., 𝛥3(𝑞s → 𝛼) was non-zero, then ℳ3 would not be a 𝜋-split of ℳ1; nevertheless
ℳ1 would still be a 𝜋-merge of ℳ3, but not a faithful one.

• If, e.g., 𝛥1(𝑞s → 𝛼) was non-zero, then ℳ1 would not be a 𝜋-merge of ℳ3; nevertheless
ℳ3 would still be a 𝜋-split of ℳ1, but not a faithful one.

5.1.1. Splitting Weights and Probabilities

Letℳ = (𝑄, 𝛴, 𝐼, 𝛥) andℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) beℛ-wtas, and let 𝜋: 𝑄′ → 𝑄 be a surjective
mapping. We say ℳ′ is a proper 𝜋-split of ℳ if ℳ′ is a 𝜋-split of ℳ,

∀𝑞 ∈ 𝑄: 𝐼(𝑞) = ∑
𝑞′∈split𝜋(𝑞)

𝐼′(𝑞′), and

∀𝜏 ∈ dom(𝛥): ∀𝑞′ ∈ split𝜋(lhs(𝜏)) : 𝛥(𝜏) = ∑
𝜏′∈split𝜋(𝜏):
lhs(𝜏′)=𝑞′

𝛥′(𝜏 ′)

It is easy to see that a proper 𝜋-split is also a faithful 𝜋-split. A proper split preserves the
weights of trees and runs as we present in the following two results.

proper split
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Lemma 5.1.4. Let ℳ and ℳ′ be ℛ-wtas, and let 𝜋 be an ℳ-splitter. If ℳ′ is a proper 𝜋-split
of ℳ, then for every (𝑡, 𝑟) ∈ runℳ and 𝑞′ ∈ split𝜋(𝑟(𝜀)) the following holds:

⟦ℳ⟧(𝑡, 𝑟) = ∑
𝑟′∈split𝜋(𝑟):

𝑟′(𝜀)=𝑞′

⟦ℳ′⟧(𝑡, 𝑟′).

Theorem 5.1.5. Let ℳ and ℳ′ be ℛ-wtas with the terminal alphabet 𝛴, and let 𝜋 be an
ℳ-splitter. If ℳ′ is a proper 𝜋-split of ℳ, then ⟦ℳ⟧(𝑡) = ⟦ℳ′⟧(𝑡) for every 𝑡 ∈ T𝛴.

We now concentrate on the probability semiring ℙ. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) and ℳ′ =
(𝑄′, 𝛴, 𝐼′, 𝛥′) be ℙ-wtas, and let 𝜋: 𝑄′ → 𝑄 be a surjective mapping. Let 𝜀 ∈ [0, 1]. We say
ℳ′ is an 𝜀-proper 𝜋-split of ℳ if ℳ is a proper 𝜋-split of ℳ, and if 𝜀 > 0, then3

• ∀𝑞 ∈ 𝑄: ∀𝑞′ ∈ split𝜋(𝑞) : 𝜀 ⋅ 𝑥 ≤ 𝐼′(𝑞′) ≤ 𝑥
𝜀 where 𝑥 = 𝐼(𝑞)

|split𝜋(𝑞)| , and

• ∀𝑟 = 𝑞0 → 𝜎(𝑞1, … , 𝑞𝑘) ∈ dom(𝛥): ∀𝑟′ ∈ split𝜋(𝑟) : 𝜀 ⋅ 𝑥 ≤ 𝛥′(𝑟′) ≤ 𝑥
𝜀 where

𝑥 = 𝛥(𝑟)
𝑐 and 𝑐 = |split𝜋(𝑟)|/|split𝜋(𝑞0)| = ∏𝑖∈{1,…,𝑘}|split𝜋(𝑞𝑖)|.

The definition of 𝜀-proper 𝜋-split implies that
• there is exactly one 1-proper 𝜋-split of ℳ,
• the terms 0-proper 𝜋-split and proper 𝜋-split are equivalent, and
• for every 𝜀, 𝜀′ ∈ [0, 1] with 𝜀 ≤ 𝜀′ every 𝜀′-proper 𝜋-split is an 𝜀-proper 𝜋-split.

Also note that for every 𝜀 > 0 every 𝜀-proper 𝜋-split is a full 𝜋-split.
Intuitively, if ℳ′ is a 1-proper 𝜋-split of ℳ, then the weight of a transition 𝜏 ∈ dom(𝛥) is

evenly distributed over transitions in split𝜋(𝜏) ⊆ dom(𝛥′) with the same left-hand side; the
same holds analogously for the root weights. If ℳ′ is an 𝜀-proper 𝜋-split of ℳ with 𝜀 ∈ [0, 1],
then 𝜀 determines howmuch ℳ′ may deviate from the 1-proper 𝜋-split of ℳ; a lower 𝜀 allows
a larger deviation.

Example 5.1.3 (continuing from p. 67). We observe the following:
• ℳ2 is an 𝜀-proper 𝜋-split of ℳ1 for every 𝜀 ≤ 0.4.
• ℳ2 is not an 𝜀-proper 𝜋-split of ℳ1 for every 𝜀 > 0.4.
• ℳ3 is not a proper 𝜋-split of ℳ1.

5.1.2. Merging Probabilities

We continue concentrating on the probability semiring ℙ. Let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be a
ℙ-wta, 𝑄 a set, and 𝜋: 𝑄′ → 𝑄 be an ℳ′-merger. We define a 𝜋-distributor to be a mapping
𝜆: 𝑄′ → [0, 1] such that for every 𝑞 ∈ 𝑄 we have ∑𝑞′∈split𝜋(𝑞) 𝜆(𝑞′) = 1, i.e., the values
assigned by 𝜆 to states which are merged to the same state sum up to 1. Let 𝜆 be a 𝜋-distributor.

3 | Here 𝜀 does not denote the empty string. It will always be clear from the context which kind of 𝜀 is meant.

proven on page 171

proven on page 172

𝜀-proper split

𝜋-distributor
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The 𝜋-merge of ℳ′ with respect to 𝜆 is defined bymerge𝜆
𝜋(ℳ′) = ℳwhereℳ = (𝑄, 𝛴, 𝐼, 𝛥)

is the 𝜋-merge of ℳ′ such that

∀𝑞 ∈ 𝑄: 𝐼(𝑞) = ∑
𝑞′∈split𝜋(𝑞)

𝐼′(𝑞′), and

∀𝜏 ∈ dom(𝛥): 𝛥(𝜏) = ∑
𝑞′∈split𝜋(lhs(𝜏))

𝜆(𝑞′) ⋅ ∑
𝜏′∈split𝜋(𝜏):
lhs(𝜏′)=𝑞′

𝛥′(𝜏 ′).

The constraints for 𝜆 ensure that the property of being semi-probabilistic is preserved while
merging:

Lemma 5.1.6. Let ℳ′ be a ℙ-wta, let 𝜋 be an ℳ′-merger, and let 𝜆 be a 𝜋-distributor. If ℳ′

is semi-probabilistic, then also merge𝜆
𝜋(ℳ′) is semi-probabilistic.

Note that there are (semi-probabilistic) 𝜋-mergesℳ ofℳ′ such that there is no 𝜋-distributor
𝜆 with ℳ = merge𝜆

𝜋(ℳ′). Nevertheless, the variety of 𝜋-distributors gives us enough flexi-
bility for our later tasks.

Let ℳ be a wta, 𝜋 an ℳ-splitter, and ℳ′ a proper 𝜋-split of ℳ. By the definitions of
proper splits and merging w.r.t. a 𝜋-distributor, it is easy to see that merge𝜆

𝜋(ℳ′) = ℳ for any
𝜋-distributor 𝜆.

The following theorem allows us to compose/decompose mergers and distributors from/into
several mergers and distributors.

Theorem 5.1.7. Let ℳ1 = (𝑄1, 𝛴, 𝐼1, 𝛥1) be a ℙ-wta, 𝜋1 an ℳ1-merger, 𝜆1 a 𝜋1-distributor;
let ℳ2 = merge𝜆1

𝜋1
(ℳ1), 𝜋2 a ℳ2-merger, and 𝜆2 a 𝜋2-distributor. Let 𝜋 = 𝜋2 ∘ 𝜋1, and con-

struct 𝜆 such that 𝜆(𝑞) = 𝜆1(𝑞) ⋅ 𝜆2(𝜋1(𝑞)) for every 𝑞 ∈ 𝑄1. Then merge𝜆2
𝜋2

(merge𝜆1
𝜋1

(ℳ1)) =
merge𝜆2

𝜋2
(ℳ2) = merge𝜆

𝜋(ℳ1).

Example 5.1.3 (continuing from p. 67). We observe the following:
• ℳ1 is a 𝜋-merge of ℳ2 with respect to 𝜆 for every 𝜋-distributor 𝜆 because ℳ2 is a
proper 𝜋-split of ℳ1.

• ℳ1 is a 𝜋-merge of ℳ3 with respect to 𝜆 where

𝜆(𝑞s) = 1, 𝜆(𝑞0) = 3
5
, and 𝜆(𝑞1) = 2

5
.

One might suspect that the weight of a single tree gets smaller by a merge because after
merging more trees may get a weight greater than zero and therefore the weight is distributed
over more trees. However, that is not true in general as the following example shows.

Example 5.1.8. Consider the probabilistic wta ℳ = (𝑄, 𝛴, 𝐼, 𝛥) where 𝑄 = {𝑞0, 𝑞1}, 𝛴 =
{𝛾(1), 𝛼(0), 𝛽(0)}, and 𝐼 and 𝛥 are given by

1⟶ 𝑞0 𝑞0 0.8⟶ 𝛾(𝑞1) 𝑞0 0.2⟶ 𝛼
0⟶ 𝑞1 𝑞1 0.2⟶ 𝛾(𝑞0) 𝑞1 0.8⟶ 𝛽 .

merge w.r.t. distributor

proven on page 172

proven on page 173
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Consider the ℳ-merger 𝜋 with 𝜋(𝑞0) = 𝜋(𝑞1) = 𝑞 and the 𝜋-distributor 𝜆 with 𝜆(𝑞0) =
𝜆(𝑞1) = 0.5. Then the 𝜋-merge of ℳ with respect to 𝜆 is ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) where 𝑄 =
{𝑞}, and 𝐼 and 𝛥′ are given by

1⟶ 𝑞 𝑞 0.5⟶ 𝛾(𝑞) 𝑞 0.1⟶ 𝛼 𝑞 0.4⟶ 𝛽 .

There are trees whose weights get smaller by the merge, e.g.:

⟦ℳ⟧(𝛼) = 0.2, ⟦ℳ⟧(𝛾(𝛽)) = 0.64,
⟦ℳ′⟧(𝛼) = 0.1, ⟦ℳ′⟧(𝛾(𝛽)) = 0.2.

At the same time there are trees whose weights get larger by the merge, e.g.:

⟦ℳ⟧(𝛽) = 0, ⟦ℳ⟧(𝛾(𝛾(𝛾(𝛾(𝛼))))) = 0.00512,
⟦ℳ′⟧(𝛽) = 0.4, ⟦ℳ′⟧(𝛾(𝛾(𝛾(𝛾(𝛼))))) = 0.00625.

Especially trees that already had a non-zero weight before the merge can have an even larger
weight after the merge; in this example this is true for the tree 𝛾(𝛾(𝛾(𝛾(𝛼)))).

5.2. The State Splitting and Merging Algorithm

In this section we present and investigate the state splitting and merging algorithm (Algo-
rithm 5.1), which is a formalization of the approach presented by Petrov, Barrett, Thibaux,
and Klein [Pet+06]. Starting with an initial probabilistic ℙ-wta ℳ0 and a tree corpus 𝑐, the
algorithm iterates the two main parts: splitting the current automaton (cf. function split) and
merging the current automaton (cf. function merge). In between, the current automaton is
trained on the corpus 𝑐 by the EM algorithm (cf. Section 4.4). This results in a sequence of
automata ℳ1, ℳ2, etc. with increasing likelihood for the corpus 𝑐 if certain assumptions are
met (cf. Theorem 5.2.2).
The splitting refines the automaton by splitting all the automaton’s states, so the EM algo-

rithm has more possibilities to approximate the corpus with the automaton and increase the
likelihood. Since we want the EM algorithm to improve the approximation, we cannot use
a 1-proper split because that would distribute the weight of every transition evenly over its
splits and the EM algorithm would then adhere to such even distributions. Therefore we ran-
domly choose an 𝜀-proper split where 𝜀 ∈ ]0, 1[ is a parameter of the algorithm. Note that we
also forbid 𝜀 = 0, i.e., we only allow full splits because otherwise splits would be allowed to
introduce zero-weights, which the EM algorithm cannot change (cf. Lemma 4.4.3).
Not every state split contributes the same amount to the increase of likelihood. Therefore

the function merge identifies split states that shall be merged, or, in other words, splits that
shall be undone. For this purpose, every state split is undone independently and the impact on
the corpus’ likelihood is analyzed in line 13. The fraction L(𝑐∣⟦merge𝜆

𝜋(ℳ′)⟧)
L(𝑐∣⟦ℳ′⟧) measures how much

undoing the currently considered split would harm the likelihood: If the fraction is below 1,
the likelihood gets worse. Of course, by undoing a split, we make the automaton coarser again
so in most of the cases this fraction will be below 1 and we harm the likelihood. On the
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other hand, we do not want the automaton to get too complex, which is a good motivation
for merging. Therefore we introduced the threshold 𝜇 ∈ [0, 1], which lets us configure the
maximally accepted loss in the likelihood to find a trade-off between the loss of likelihood and
the complexity of the automaton. If we exceed this threshold, i.e., the fraction is below 𝜇, then
we keep the currently considered split. For every merge, we have to determine a distributor 𝜆
(cf. lines 12 and 14). The distributor shall induce a merge such that the resulting wta is close to
the wta before merging; we will give two variants to determine reasonable distributors in the
following section.

Figure 5.4 visualizes the development of the likelihood of the corpus in an iteration of Al-
gorithm 5.1; you can ignore 𝜋, 𝜋1, 𝜋2, and id for now. Note that some of the relations in the
figure only hold under certain assumptions, which we will detail in Theorem 5.2.2. To prove
the relations, we need the following lemma.

Lemma 5.2.1. Let 𝛴 be a ranked alphabet, 𝑐 a corpus over T𝛴, and ℳ1 and ℳ2 probabilistic
ℙ-wtas over 𝛴. If crisp(ℳ2) is a sub-wta of crisp(ℳ1) up to isomorphism, then

L(𝑐 ∣ ⟦mle𝑐(ℳ1)⟧) ≥ L(𝑐 ∣ ⟦ℳ2⟧).

Proof. Since crisp(ℳ2) is a sub-wta of crisp(ℳ1) (up to isomorphism), prob(ℳ1) clearly con-
tains a wta ℳ′

1 that is equivalent to ℳ2. Since mle chooses from prob(ℳ1) to maximize the
likelihood of 𝑐, we have L(𝑐 ∣ ⟦mle𝑐(ℳ1)⟧) ≥ L(𝑐 ∣ ⟦ℳ′

1⟧) = L(𝑐 ∣ ⟦ℳ2⟧). q.e.d.

We can now investigate the relations from Figure 5.4.

Theorem 5.2.2. Let 𝑖 ≥ 1. Consider the variable bindings in the 𝑖-th iteration of the main
loop (line 1) of Algorithm 5.1. Under the assumptions that

• EM(ℳ, 𝑐) = mle𝑐(ℳ) for every wta ℳ, and
• crisp(ℳ𝑖−1) is a sub-wta of crisp(ℳ′

3) up to isomorphism,
we have that

• L(𝑐 ∣ ⟦ℳ𝑖−1⟧) 1= L(𝑐 ∣ ⟦ℳ′
1⟧)

2
≤ L(𝑐 ∣ ⟦ℳ′

2⟧)
3
≥ L(𝑐 ∣ ⟦ℳ′

3⟧)
4
≤ L(𝑐 ∣ ⟦ℳ𝑖⟧),

• L(𝑐 ∣ ⟦ℳ′
2⟧)

5
≥ L(𝑐 ∣ ⟦ℳ𝑖⟧), and

• L(𝑐 ∣ ⟦ℳ𝑖−1⟧)
6
≤ L(𝑐 ∣ ⟦ℳ𝑖⟧).

Proof. First let us highlight some connections between the different wtas. For this purpose,
consider the following splitters and mergers, which are also visualized in Figure 5.4. Let 𝜋 be
the splitter used in iteration 𝑖 in line 6 in Algorithm 5.1, i.e., ℳ′

1 is a 𝜋-split of ℳ𝑖−1, and let
𝜋1 be the merger used in iteration 𝑖 in line 15, i.e., ℳ′

3 is a 𝜋1-merge of ℳ′
2. In Figure 5.4 we

indicated that the EM algorithm does not change the set of states by id. By Lemma 4.4.3, we
also have that ℳ′

2 is a 𝜋-split of ℳ𝑖−1, ℳ𝑖 is a 𝜋1-merge of ℳ′
2, and ℳ′

3 is a 𝜋1-merge of ℳ′
1.

Since the function merge only undoes splits induced by 𝜋, there is a 𝜋2 such that 𝜋 = 𝜋2 ∘ 𝜋1,
hence, ℳ′

3 and ℳ𝑖 are 𝜋2-splits of ℳ𝑖−1.
We now prove the relations from the theorem one after another following their numbering.
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Algorithm 5.1The State Splitting and Merging Algorithm
Input: • corpus 𝑐 over T𝛴 where 𝛴 is a ranked alphabet

• probabilistic ℙ-wta ℳ0 = (𝑄0, 𝛴, 𝐼0, 𝛥0) such that L(𝑐 ∣ ⟦ℳ0⟧) > 0
• 𝜇 ∈ [0, 1] and 𝜀 ∈ ]0, 1[

Output: • sequence ℳ1, ℳ2, … of probabilistic ℙ-wtas
such that L(𝑐 ∣ ⟦ℳ1⟧) ≤ L(𝑐 ∣ ⟦ℳ2⟧) ≤ …
Note: This property only holds under certain assumptions; cf. Theorem 5.2.2.

1: for 𝑖 ← 1, 2, … do
2: ℳ′

1 ← split(ℳ𝑖−1); ℳ′
2 ← EM(ℳ′

1, 𝑐)
3: ℳ′

3 ← merge(ℳ′
2); ℳ𝑖 ← EM(ℳ′

3, 𝑐)

4: function split(ℳ)
5: 𝜋 ← ℳ-splitter splitting every state 𝑞 in ℳ into 𝑞1 and 𝑞2

6: return an 𝜀-proper 𝜋-split of ℳ
7: function merge(ℳ′)
8: 𝜋 ← identity mapping
9: for all states 𝑞 s.t. 𝑞1, 𝑞2 in ℳ′ do
10: ̂𝜋 ← identity mapping
11: ̂𝜋(𝑞1) ← 𝑞 and ̂𝜋(𝑞2) ← 𝑞
12: 𝜆 ← a good ̂𝜋-distributor
13: if L(𝑐∣⟦merge𝜆

𝜋(ℳ′)⟧)
L(𝑐∣⟦ℳ′⟧) ≥ 𝜇 then 𝜋(𝑞1) ← 𝑞 and 𝜋(𝑞2) ← 𝑞

14: 𝜆 ← a good 𝜋-distributor
15: return merge𝜆

𝜋(ℳ′)
16: function EM(ℳ, 𝑐)
17: return approximation of mle𝑐(ℳ) calculated by the EM algorithm (Section 4.2)

𝜋2

id 𝜋1 id

ℳ𝑖−1 ℳ′
1 ℳ′

2 ℳ′
3 ℳ𝑖

L(𝑐 ∣ ⟦ℳ𝑖−1⟧) 1= L(𝑐 ∣ ⟦ℳ′
1⟧)

2
≤ L(𝑐 ∣ ⟦ℳ′

2⟧) (
3
≥) L(𝑐 ∣ ⟦ℳ′

3⟧)
4
≤ L(𝑐 ∣ ⟦ℳ𝑖⟧)

(
5
≥)

(
6
≤)

EM split EM merge EM

𝜋 = 𝜋2 ∘ 𝜋1

Figure 5.4.: Splitters/mergers and development of the likelihood in an iteration of Algo-
rithm 5.1. Note: The parenthesized relations only hold under certain assumptions;
cf. Theorem 5.2.2.
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(1) L(𝑐 ∣ ⟦ℳ𝑖−1⟧) = L(𝑐 ∣ ⟦ℳ′
1⟧): This follows directly from Theorem 5.1.5 since, by

definition of split, ℳ′
1 is a proper split of ℳ𝑖−1.

(2) L(𝑐 ∣ ⟦ℳ′
1⟧) ≤ L(𝑐 ∣ ⟦ℳ′

2⟧): This is a property of the EM algorithm, cf. Lemma 4.4.2.

(3) L(𝑐 ∣ ⟦ℳ′
2⟧) ≥ L(𝑐 ∣ ⟦ℳ′

3⟧): Here we may use Lemma 5.2.1, where ℳ1 and ℳ2 from
the lemma are instantiated with ℳ′

1 and ℳ′
3, respectively, and by the first assumption

of the theorem we have ℳ′
2 = mle𝑐(ℳ′

1); we now detail why the lemma is applicable.

Let (𝑄𝑖−1, 𝛴, 𝐼𝑖−1, 𝛥𝑖−1) = ℳ𝑖−1 and (𝑄′
𝑗, 𝛴, 𝐼′

𝑗 , 𝛥′
𝑗) = ℳ′

𝑗 for every 𝑗 ∈ {1, 3}.
We have to show that crisp(ℳ′

3) is a sub-wta of crisp(ℳ′
1) up to isomorphism. That

means there must be an injective mapping 𝜄 : 𝑄′
3 → 𝑄′

1 such that the application of
𝜄 to every state in crisp(ℳ′

3) yields a sub-wta of crisp(ℳ′
1). We now show that this is

indeed the case for every 𝜄 where 𝜄(𝑞) ∈ split𝜋1
(𝑞) for every 𝑞 ∈ 𝑄′

3.

Let 𝜏 ′ ∈ supp(𝛥′
3) and let 𝜄(𝜏 ′) be the result of applying 𝜄 to every state in 𝜏 ′. We show

that 𝜄(𝜏 ′) ∈ supp(𝛥′
1). Since ℳ′

3 is a 𝜋2-split of ℳ𝑖−1, there is a 𝜏 ∈ supp(𝛥𝑖−1)
such that 𝜏 ′ ∈ split𝜋2

(𝜏). Since 𝜀 > 0 and ℳ′
1 is 𝜀-proper 𝜋-split of ℳ𝑖−1, ℳ′

1 is
also a full 𝜋-split of ℳ𝑖−1. Therefore split𝜋(𝜏) ⊆ supp(𝛥′

1) and since 𝜋 = 𝜋2 ∘ 𝜋1 also
split𝜋1

(𝜏 ′) ⊆ supp(𝛥′
1). Since 𝜄(𝜏 ′) ∈ split𝜋1

(𝜏 ′), we have 𝜄(𝜏 ′) ∈ supp(𝛥′
1).

Analogously it can be shown that 𝜄(𝑞′) ∈ supp(𝐼′
1) for every 𝑞′ ∈ supp(𝐼′

3). Hence,
crisp(ℳ′

3) is a sub-wta of crisp(ℳ′
1) up to isomorphism and Lemma 5.2.1 is indeed

applicable.

(4) L(𝑐 ∣ ⟦ℳ′
3⟧) ≤ L(𝑐 ∣ ⟦ℳ𝑖⟧): This is analogous to (2).

(5) L(𝑐 ∣ ⟦ℳ′
2⟧) ≥ L(𝑐 ∣ ⟦ℳ𝑖⟧): Again we may use Lemma 5.2.1, where ℳ1 and ℳ2 from

the lemma are instantiated by ℳ′
1 and ℳ𝑖, respectively. The proof that the lemma is

applicable is analogous to the proof in (3) because by Lemma 4.4.3we have that crisp(ℳ𝑖)
is a sub-wta of crisp(ℳ′

3).

(6) L(𝑐 ∣ ⟦ℳ𝑖−1⟧) ≤ L(𝑐 ∣ ⟦ℳ𝑖⟧): For this relation we finally need the second assumption
from the theorem. Then we can directly apply Lemma 5.2.1, where ℳ1 and ℳ2 from
the lemma are instantiated by ℳ′

3 and ℳ𝑖−1, respectively. By the first assumption from
the theorem, we then have that ℳ𝑖 = mle𝑐(ℳ′

3), which, together with Lemma 5.2.1,
proves the relation. q.e.d.

Let us now discuss the assumptions inTheorem 5.2.2 from a practical point of view. The first
assumption arises from the fact that the EM algorithm only converges to local maxima (or gets
stuck at other critical points) and that there is no general way to find the maximum likelihood
estimate. We just hope that a result of the EM algorithm is “good enough”.

The second assumption is needed because the run of the EM algorithm that returns ℳ′
2

and the merge that returns ℳ′
3 might introduce zero-weights such that crisp(ℳ𝑖−1) is not

a sub-wta of crisp(ℳ′
3) up to isomorphism although ℳ′

3 is a 𝜋2-split of ℳ𝑖−1. Those zero-
weights cannot be changed by the application of the EM algorithm to ℳ′

3 (cf. Lemma 4.4.3) so
without the assumption we could end up with L(𝑐 ∣ ⟦ℳ𝑖−1⟧) > L(𝑐 ∣ ⟦ℳ𝑖⟧) in pathological
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cases. However, practically these new zero-weights can be replaced by small non-zero weights
before executing the EM algorithm.
Let us discuss some further practical issues. In practice we need an initial wta as input for the

algorithm. Petrov, Barrett, Thibaux, and Klein [Pet+06] use the read-off wta (Definition 4.3.1)
for that purpose. One could also try to start with a wta that has only one state.4 It is important
to start with a wta that does not already lead to overfitting when the EM algorithm is applied
because the state splitting allows to improve the fitting (i.e., the likelihood) even more.
To additionally counter overfitting, Petrov, Barrett, Thibaux, and Klein [Pet+06] added an-

other step to the loop of the algorithm, where the weights of the current wta are slightly re-
distributed. This technique is called smoothing. We omitted smoothing from our formalization
since its effects would be undone in the next application of the EM algorithm anyway because
we assumed the EM algorithm finds the maximum likelihood estimate (cf. Theorem 5.2.2).
Algorithm 5.1 produces an infinite sequence of wtas. However, in practice the algorithm

needs to stop at some point. Hold-out validation can be used to find a suitable point for stopping
(cf. Chapter 4, page 51).
The reader might have noticed that when we split or merge a wta ℳ into ℳ′, we cautiously

try to assign weights to ℳ′ such that ℳ′ is as close to ℳ as possible. Formally, there is
no reason for that because after every split and merge we execute the EM algorithm, and we
assumed that the EM algorithm returns the maximum likelihood estimate (cf. Theorem 5.2.2).
However, in practice the EM algorithm only converges to critical points, and the wta that
is initially passed to the EM algorithm greatly influences to which point the EM algorithm
converges. Therefore we try to transfer our earlier training achievements from ℳ to ℳ′ as
well as possible to give the EM algorithm a good starting point.

Example 5.2.3. Let 𝛴 = {𝛼(0), 𝛾(1)} be a ranked alphabet and 𝑐 : T𝛴 → ℝ≥0 a corpus where

𝑐(𝛾(𝛼)) = 1, 𝑐(𝛾(𝛾(𝛾(𝛼)))) = 1,

and every other tree in T𝛴 is mapped to 0. We create the read-off wta of 𝑐 (Definition 4.3.1) and
we get ℳ0 = (𝑄, 𝛴, 𝐼, 𝛥) with 𝑄 = {𝑞𝛼, 𝑞𝛾} and the following non-zero root and transition
weights:

1⟶ 𝑞𝛾 𝑞𝛾
0.5⟶ 𝛾(𝑞𝛾) 𝑞𝛾

0.5⟶ 𝛾(𝑞𝛼) 𝑞𝛼
1⟶ 𝛼 .

With this wta, the likelihood of our corpus is L(𝑐 ∣ ⟦ℳ0⟧) = 0.54 = 0.0625.
We now input 𝑐 and ℳ0 into the state splitting and merging algorithm (Algorithm 5.1). First

the algorithm calls split, which splits each state of ℳ0 into two new states, i.e., it uses the
ℳ0-splitter 𝜋 where 𝜋(𝑞0

𝛾) = 𝜋(𝑞1
𝛾) = 𝑞𝛾 and 𝜋(𝑞0

𝛼) = 𝜋(𝑞1
𝛼) = 𝑞𝛼. The 1-proper 𝜋-split of

ℳ0 then has the following non-zero weights:
0.5⟶ 𝑞0

𝛾 𝑞0
𝛾

0.25⟶ 𝛾(𝑞0
𝛾) 𝑞0

𝛾
0.25⟶ 𝛾(𝑞0

𝛼) 𝑞0
𝛼

1⟶ 𝛼
0.5⟶ 𝑞1

𝛾 𝑞0
𝛾

0.25⟶ 𝛾(𝑞1
𝛾) 𝑞0

𝛾
0.25⟶ 𝛾(𝑞1

𝛼) 𝑞1
𝛼

1⟶ 𝛼

𝑞1
𝛾

0.25⟶ 𝛾(𝑞0
𝛾) 𝑞1

𝛾
0.25⟶ 𝛾(𝑞0

𝛼)

𝑞1
𝛾

0.25⟶ 𝛾(𝑞1
𝛾) 𝑞1

𝛾
0.25⟶ 𝛾(𝑞1

𝛼) .

4 | This is different from using only a single latent annotation when using wcfg-las instead of wtas.
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Using the 1-proper 𝜋-split as a starting point for the EM algorithm is not useful because the
EM algorithm would preserve the symmetries in the weights, which of course limits the possi-
bilities to obtain a high likelihood. Therefore Algorithm 5.1 uses another 𝜀-proper 𝜋-split ℳ′

1
with an 𝜀 < 1 that does not have such symmetries. Recall that 𝜀 just controls how much an
𝜀-proper 𝜋-split may deviate from the 1-proper 𝜋-split, therefore we skip giving an example
for ℳ′

1. Then ℳ′
1 is passed to the EM algorithm, which might find the wta ℳ′

2 with the fol-
lowing weights:

1⟶ 𝑞0
𝛾 𝑞0

𝛾
0⟶ 𝛾(𝑞0

𝛾) 𝑞0
𝛾

0.3⟶ 𝛾(𝑞0
𝛼) 𝑞0

𝛼
1⟶ 𝛼

0⟶ 𝑞1
𝛾 𝑞0

𝛾
0.3⟶ 𝛾(𝑞1

𝛾) 𝑞0
𝛾

0.3⟶ 𝛾(𝑞1
𝛼) 𝑞1

𝛼
1⟶ 𝛼

𝑞1
𝛾

1⟶ 𝛾(𝑞0
𝛾) 𝑞1

𝛾
0⟶ 𝛾(𝑞0

𝛼)

𝑞1
𝛾

0⟶ 𝛾(𝑞1
𝛾) 𝑞1

𝛾
0⟶ 𝛾(𝑞1

𝛼) .

For each tree in the corpus, there are exactly two non-zero weighted runs of ℳ′
2, which only

differ in the state at the position of the 𝛼-leaf. The likelihood of 𝑐 given ℳ′
2 is therefore

L(𝑐 ∣ ⟦ℳ′
2⟧) = (2 ⋅ 1

3) ⋅ (2 ⋅ 1
3

2) = 4
27 ≈ 0.15.

Next, the algorithm calls merge, which undoes the split of each state of ℳ0 independently
and analyzes the change in the likelihood. Let us start with merging the states 𝑞0

𝛾 and 𝑞1
𝛾 back

to 𝑞𝛾, i.e., we use the ℳ′
2-merger 𝜋 with 𝜋(𝑞0

𝛾) = 𝜋(𝑞1
𝛾) = 𝑞𝛾, 𝜋(𝑞0

𝛼) = 𝑞0
𝛼, and 𝜋(𝑞1

𝛼) = 𝑞1
𝛼.

We use the 𝜋-distributor 𝜆 where 𝜆(𝑞0
𝛾) = 3

4 and 𝜆(𝑞1
𝛾) = 1

4 . So merge𝜆
𝜋(ℳ′

2) yields
1⟶ 𝑞𝛾 𝑞𝛾

0.5⟶ 𝛾(𝑞𝛾) 𝑞𝛾
0.25⟶ 𝛾(𝑞0

𝛼) 𝑞0
𝛼

1⟶ 𝛼

𝑞𝛾
0.25⟶ 𝛾(𝑞1

𝛼) 𝑞1
𝛼

1⟶ 𝛼 .

Let us call this wta ℳ𝛾. This merge reduces the likelihood significantly; to be precise we end
up where we started: L(𝑐 ∣ ⟦ℳ𝛾⟧) = L(𝑐 ∣ ⟦ℳ0⟧) = 0.0625. The algorithm would reject this
merge for every 𝜇 > L(𝑐∣⟦ℳ𝛾⟧)

L(𝑐∣⟦ℳ′
2⟧) = 27

64 ≈ 0.42.
Let us now merge 𝑞0

𝛼 and 𝑞1
𝛼 back to 𝑞𝛼, i.e., we use the ℳ′

2-merger 𝜋 with 𝜋(𝑞0
𝛾) = 𝑞0

𝛾 ,
𝜋(𝑞1

𝛾) = 𝑞1
𝛾 , and 𝜋(𝑞0

𝛼) = 𝜋(𝑞1
𝛼) = 𝑞𝛼. We use the 𝜋-distributor 𝜆 where 𝜆(𝑞0

𝛼) = 𝜆(𝑞1
𝛼) = 0.5.

So merge𝜆
𝜋(ℳ′

2) yields
1⟶ 𝑞0

𝛾 𝑞0
𝛾

0⟶ 𝛾(𝑞0
𝛾) 𝑞0

𝛾
0.6⟶ 𝛾(𝑞𝛼) 𝑞𝛼

1⟶ 𝛼
0⟶ 𝑞1

𝛾 𝑞0
𝛾

0.3⟶ 𝛾(𝑞1
𝛾)

𝑞1
𝛾

1⟶ 𝛾(𝑞0
𝛾) 𝑞1

𝛾
0⟶ 𝛾(𝑞𝛼)

𝑞1
𝛾

0⟶ 𝛾(𝑞1
𝛾) .

Let us call this wta ℳ𝛼. This merge does not change the likelihood at all, i.e., we have L(𝑐 ∣
⟦ℳ𝛼⟧) = L(𝑐 ∣ ⟦ℳ′

2⟧) = 4
27 ≈ 0.15. Hence, L(𝑐∣⟦ℳ𝛼⟧)

L(𝑐∣⟦ℳ′
2⟧) = 1, which means the algorithm would

perform this merge for every 𝜇 ∈ [0, 1].
If𝜇 is chosen such that the algorithm just performs the secondmerge, thenmerge returns the

wta ℳ′
3 = ℳ𝛼. This wta is then passed to the EM algorithm, which cannot further improve

the likelihood. Hence, the first iteration of the algorithm yields ℳ1 = ℳ′
3 = ℳ𝛼.
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5.2.1. Finding a Good 𝜋-Distributor

As we have seen, our definition of merge has the parameter 𝜆, which gives us some flexibil-
ity on how to merge the weights of transitions while preserving being semi-probabilistic (cf.
Lemma 5.1.6). In this section we try to find reasonable values for 𝜆. For this purpose we will
use the results of Corazza and Satta [CS07] that we introduced in Section 4.6
Let ℳ′ be a probabilistic ℙ-wta and 𝜋 an ℳ′-merger. We want to find a 𝜋-merge ℳ of

ℳ′ by choosing a good 𝜋-distributor 𝜆 for merge𝜆
𝜋(ℳ′). Note that the state set of ℳ is

independent of 𝜆. Hence, also the set of runs of ℳ is independent of 𝜆; therefore we can
assume that runℳ is fixed without having a fixed 𝜆, yet.
In order to use the estimation of Corazza and Satta [CS07], we have to define a probability

distribution over trees with runs ofℳ usingℳ′. For this purpose we define ⟦ℳ′⟧I𝜋 : runℳ →
ℙ where

∀(𝑡, 𝑟) ∈ runℳ : ⟦ℳ′⟧I𝜋(𝑡, 𝑟) = ∑
𝑟′∈split𝜋(𝑟)

⟦ℳ′⟧I(𝑡, 𝑟′) . (5.1)

If we consider the marginal distributions over trees, then ⟦ℳ′⟧I𝜋 and ⟦ℳ′⟧I assign the same
weight to trees:

∀𝑡 ∈ T𝛴 : ⟦ℳ′⟧I𝜋(𝑡) = ∑
𝑟∈runℳ(𝑡)

∑
𝑟′∈split𝜋(𝑟)

⟦ℳ′⟧I(𝑡, 𝑟′) = ⟦ℳ′⟧I(𝑡).

Minimizing Cross-Entropy Between the Original and the Merged WTA

Now, following Corazza and Satta [CS07], we can estimate the weights of the merged automa-
ton ℳ such that the cross-entropy between the probability distributions over trees with runs
of ℳ determined by ℳ′ (cf. Equation (5.1)) and ℳ is minimized:

Theorem 5.2.4. Let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be a probabilistic ℙ-wta and 𝜋 an ℳ′-merger. Let
ℳ̂ be the probabilistic 𝜋-merge of ℳ′ that minimizes the cross-entropy w.r.t. runs of ℳ̂, i.e.,

ℳ̂ = argmin
wta ℳ such that :

ℳ is a 𝜋-merge of ℳ′,
ℳ is probabilistic

Hrunℳ
(⟦ℳ′⟧I𝜋 ∥ ⟦ℳ⟧I).

Then ℳ̂ = merge𝜆
𝜋(ℳ′) where 𝜆 is the 𝜋-distributor such that

∀𝑞′ ∈ 𝑄′ : 𝜆(𝑞′) =
E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

∑𝑞″∈split𝜋(merge𝜋(𝑞′)) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞″ ∣ 𝑡, 𝑟′))
.

This approach is not new; Petrov and Klein [PK07a] used the same idea to estimate prob-
ability assignments for a hierarchy of context-free grammars with latent annotations. Their
grammar hierarchy was produced by state-splitting [Pet+06].

proven on page 174
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Considering a Corpus While Merging

Let us recall our actual goal of state-splitting: Given a corpus over trees, we want to find an
automaton that approximates the corpus. To evaluate the approximation, we use the likeli-
hood, where a larger likelihood indicates a better approximation. Equivalently we can use the
cross-entropy to evaluate the approximation (see Lemma 4.6.1), where a smaller cross-entropy
indicates a better approximation. Actually, in the previous paragraph, we indeed minimized a
cross-entropy, but this cross-entropy did not consider a corpus. We may have considered the
corpus indirectly because, in our state-splitting algorithm, a grammar is trained on a corpus
before it is merged, but the merging itself, as it was presented, is agnostic to the corpus.

Now we want to merge in a way that is aware of a corpus. So, again, we want to find a
𝜋-distributor to merge ℳ′. For this purpose, let 𝑐 be a corpus over T𝛴 where 𝛴 is the alphabet
of terminal symbols of ℳ′. Let us assume that ℳ′ is the result of an EM training on 𝑐. After
the merge, we can train the resulting automaton on 𝑐 again using the EM algorithm. The
weights after the merge will be the starting point for the latter run of the EM algorithm. As we
have detailed earlier, we want to choose a starting point that is similar to ℳ′. Now, the idea
is to use the unmerged automaton ℳ′ directly as a starting point for the latter run of the EM
algorithm: We can use ℳ′ to estimate the expected frequencies of transitions, and use these
to execute an EM step.

Theorem 5.2.5 (EM distributor). Let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be a probabilistic ℙ-wta and 𝜋 an
ℳ′-merger. Let 𝑐 be a corpus over T𝛴, and let 𝑝𝑐 be the empirical distribution of 𝑐. Let ℳ be
a 𝜋-merge of ℳ′.

If ℳ′ is an EM fixpoint w.r.t. 𝑐, then EMStep⟦ℳ′⟧I𝜋
𝑐 (ℳ) = merge𝜆

𝜋(ℳ′) where 𝜆 is the
𝜋-distributor such that

∀𝑞′ ∈ 𝑄′ : 𝜆(𝑞′) =
E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
∑𝑞″∈split𝜋(merge𝜋(𝑞′)) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧(⋅∣𝑡)(𝜆𝑟′. f(𝑞″ ∣ 𝑡, 𝑟′)))
.

We call the distributor presented above the EM 𝜋-distributor. For our merging, we can actually
assume that the automaton to merge is an EM fixpoint because it is the result of an execution of
the EM algorithm. In the next section, we will see that this 𝜋-distributor is used in the Berkeley
Parser [Pet+06].

5.2.2. Notes About the Berkeley Parser

In this sectionwe give some implementation details of the state splitting andmerging algorithm
in the Berkeley Parser [Pet+06] and relate them to our formalization in the previous sections.
We base our analysis on the version published on GitHub by Slav Petrov.5 The Berkeley Parser
is implemented in Java; we will reference relevant classes, functions, and code lines in the
footnotes. We only describe the default behavior of the implementation. There are several

5 | cf. https://github.com/slavpetrov/berkeleyparser. We consider the tag release-1.0, which references commit
0365f7adb3ef9f4fa8107e95bafdb3966324f3be. The commit is actually empty and not an ancestor of mas-
ter, but its parent d2159589ece5f33440f38c6c81797f747b6abe06 is an ancestor of master. For consistent
indentation, view the source code with tabulator width 2.

proven on page 176
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5.2. The State Splitting and Merging Algorithm

command line flags to change that behavior, but for simplicity we will ignore them in our
description.
The implementation uses weighted context-free grammars with latent annotations (wcfg-las,

cf. Section 3.2) instead of wtas; recall that both are practically equally powerful (cf. Section 3.4).
In the source code, the non-terminals of a wcfg-la are called states and the latent annotations
correspond to substates. In contrast to wcfg-las, every state may have a different number of
substates. The states and substates are represented as ints so that they can be directly used
for array indexing.
As a corpus, the Berkeley Parser expects a finite sequence of trees. By counting the oc-

currences of trees, such a sequence can be easily converted to a corpus that is expected by
Algorithm 5.1. As the initial grammar, the Berkeley Parser uses the wcfg-la equivalent of the
read-off wta of the corpus (Definition 4.3.1).
The implementation iterates split, EM, merge, and EM similarly to Algorithm 5.1. Addition-

ally the iteration is augmented by a smoothing step and another call to EM. Smoothing slightly
redistributes the current weights to counter overfitting. For details about the smoothing, we
refer to the original publication [Pet+06, Section 2.4].
The implementation of splitting is straight forward. Every substate is split into two new

substates and the weights resemble a 1-proper split tweaked by pseudo random numbers to
give the EM algorithm a suitable start.
The merging is much more involved and comprises several steps:6
• calculation of inside and outside weights,
• calculation of the entries of an array called mergeWeights,
• approximation of the change in likelihood caused by the different merge options,
• determination of the states that should be merged, and finally
• application of the merge.

We now link those steps to our notions in the previous sections. For that purpose we assume
that ℳ′ is the wta corresponding to the grammar just before merging. For a state 𝑠 and a
substate 𝑖 of 𝑠, we denote the corresponding wta state by 𝑠𝑖.
The inside and outside weights are the basis for the further calculations; they are restricted

to trees and contexts occurring in the corpus. In the source code, they are called inside and
outside scores.7 Note that both scores might be scaled by some constants,8 presumably to
prevent floating point underflow. The scores are attached to the nodes of the considered tree:
Let 𝑡 be a tree and 𝑙 the node of the tree at some position 𝜌. Then, after calculating the scores,9
we have

calcScaleFactor(𝑙.getIScale()) ⋅ 𝑙.getIScore(𝑖) = insideℳ′(𝑠𝑖 ∣ 𝑡|𝜌) and

calcScaleFactor(𝑙.getOScale()) ⋅ 𝑙.getOScore(𝑖) = outsideℳ′(𝑠𝑖 ∣ 𝑡|𝜌)

where 𝑠 is the state at 𝑙 and 𝑖 is a substate of 𝑠.10 Note that for a fixed state the scaling of the

6 | edu.berkeley.nlp.PCFGLA.GrammarTrainer.main lines 404–408.
7 | edu.berkeley.nlp.syntax.StateSet.getIScore and ….getOScore.
8 | edu.berkeley.nlp.syntax.StateSet.getIScale and ….getOScale, also cf. ….scaleIScores and ….sca-

leOScores, and cf. edu.berkeley.nlp.util.ScalingTools.
9 | edu.berkeley.nlp.PCFGLA.ArrayParser.doInsideOutsideScores.
10 | edu.berkeley.nlp.util.ScalingTools.calcScaleFactor lines 21–44.
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inside scores is the same for all its substates. This holds analogously for the outside scores.
With the help of the inside and outside scores, the variable mergeWeights11 is calculated.

It is a nested array of doubles ranging over states and substates. For every state 𝑠 and every
substate 𝑖 of 𝑠, we have

mergeWeights[𝑠][𝑖] = ∑
𝑡

∑
𝑙∈𝑡:

𝑙.getState()=𝑠

𝑙.getIScore(𝑖) ⋅ 𝑙.getOScore(𝑖)
∑𝑗 𝑙.getIScore(𝑗) ⋅ 𝑙.getOScore(𝑗)

(5.2)

where 𝑡 runs over all trees in trainStateSetTrees, i.e. the training corpus, 𝑙 runs over nodes
of 𝑡, and 𝑗 runs over all substates of state 𝑠.

Note that the mergeWeights as presented above are normalized12 after their cal-
culation such that ∀𝑠: ∑𝑖 mergeWeights[𝑠][𝑖] = 1. However, this normalization
cancels out in our considerations anyway, therefore we do not mention it anymore.

The denominator in Equation (5.2) equals the weight of the tree 𝑡 in the current grammar, but
scaled according to the scaling of the inside and outside scores. However, the numerator has
the same scaling, hence, the scaling cancels out.13 All in all, these array entries resemble the
expected values in the numerator of the EM distributor (Theorem 5.2.5):

mergeWeights[𝑠][𝑖] = E𝑝𝑐
(𝜆𝑡.E⟦ℳ′⟧(⋅∣𝑡)(𝜆𝑟′. f(𝑠𝑖 ∣ 𝑡, 𝑟′))).

Next the mergeWeights are used to approximate the change in likelihood for the different
merge options. In contrast to Algorithm 5.1, the ratio of likelihoods before and after the merge
(cf. line 13) is only approximated [Pet+06, cf. ΔANNOTATION on p. 436].14 For a state 𝑠 and sub-
states 𝑖 and 𝑗 of 𝑠, the approximation of the likelihood change for merging 𝑖 and 𝑗 is calculated
as follows:

deltas[𝑠][𝑖][𝑗] = ∑
𝑡

∑
𝑙∈𝑡:

𝑙.getState()=𝑠

log
∑𝑘 𝑙.getIScore(𝑘) ⋅ 𝑙.getOScore(𝑘)

(∑𝑘: 𝑘∉{𝑖,𝑗} 𝑙.getIScore(𝑘) ⋅ 𝑙.getOScore(𝑘))
+ (𝑝1 ⋅ 𝑙.getIScore(𝑖) + 𝑝2 ⋅ 𝑙.getIScore(𝑗))

⋅ (𝑙.getOScore(𝑖) + 𝑙.getOScore(𝑗))
(5.3)

where

𝑝1 = mergeWeights[𝑠][𝑖]
mergeWeights[𝑠][𝑖] + mergeWeights[𝑠][𝑗]

and

11 | edu.berkeley.nlp.PCFGLA.GrammarTrainer.main line 404,
edu.berkeley.nlp.PCFGLA.GrammarMerger.computeMergeWeights lines 406–430, and
edu.berkeley.nlp.PCFGLA.Grammar.tallyMergeWeights lines 2172–2193.

12 | edu.berkeley.nlp.PCFGLA.GrammarMerger.computeMergeWeights line 427 and
edu.berkeley.nlp.PCFGLA.Grammar.normalizeMergeWeights lines 2199–2211.

13 | edu.berkeley.nlp.PCFGLA.Grammar.tallyMergeWeights line 2188.
14 | edu.berkeley.nlp.PCFGLA.GrammarTrainer.main line 405,

edu.berkeley.nlp.PCFGLA.GrammarMerger.computeDeltas lines 386–398, and
edu.berkeley.nlp.PCFGLA.Grammar.tallyMergeScores lines 2224–2278.
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5.3. Conclusion and Further Research

𝑝2 = mergeWeights[𝑠][𝑗]
mergeWeights[𝑠][𝑖] + mergeWeights[𝑠][𝑗]

.

The variables 𝑝1 and 𝑝2 correspond to the identically named variables in the paper, where they
were not defined formally [Pet+06, p. 436]. Note that 𝑝1 and 𝑝2 equal𝜆(𝑠𝑖) and𝜆(𝑠𝑗) for the EM
𝜋-distributor 𝜆 for a merger 𝜋 that merges 𝑠𝑖 and 𝑠𝑗. In Equation (5.3), again, any scaling of the
inside and outside scores cancels out.15 Ignoring the scaling, the numerator is the probability of
𝑡 in the current grammar. The denominator intuitively is the probability of 𝑡 where the merge
of 𝑖 and 𝑗 is only applied at node 𝑙. Note that the values in deltas are logarithmized and the
ratio is reciprocal in contrast to line 13 in Algorithm 5.1 and ΔANNOTATION in the paper [Pet+06,
p. 436].
Then the deltas are used to determine the states that shall be merged. Only state pairs that

originated from the same state while splitting are considered for merging. Instead of fixing a
threshold 𝜇 as in Algorithm 5.1, the Berkeley Parser adapts this threshold for every merge.16
The threshold is chosen such that a given percentage (default: 50%) of state splits is undone.
The states to be merged are then selected according to the dynamically determined 𝜇.
When finally performing the merge, the Berkeley Parser again uses the EM distributor.17

Analogously to 𝑝1 and 𝑝2 above the distributor for the merge is calculated with the help of the
mergeWeights. It is calculated inline and not assigned to a dedicated variable;18 yet the EM
distributor can be recognized.

5.3. Conclusion and Further Research

In this chapter we formalized the state splitting and merging algorithm of Petrov, Barrett,
Thibaux, and Klein [Pet+06]. For this purpose we started with the investigation of splitting
and merging for wtas (Section 5.1). This laid the groundwork for the definition of the state
splitting and merging algorithm (Algorithm 5.1). We showed that the likelihood of the cor-
pus increases or stays the same with every iteration of the algorithm (Theorem 5.2.2). We also
presented two ways for the algorithm to deal with the weights while merging (Theorems 5.2.4
and 5.2.5). Finally we connected our theoretical view on the algorithm to the practical imple-
mentation in the Berkeley Parser [Pet+06] (Section 5.2.2).
In the introduction (Chapter 1) we recalled that many grammar formalisms can be repre-

sented by combining a regular tree grammar (or finite-state tree automaton) with a homo-
morphism. Hence, the state splitting and merging approach can also be transferred to other
grammar formalisms. This was already done for tree substitution grammars [FVP12; Shi+12]
and tree-adjoining grammars on the basis of hypergraphs [OS12]. Currently, state splitting and
merging for hybrid grammars is investigated in order to develop parsers for non-projective

15 | edu.berkeley.nlp.PCFGLA.Grammar.tallyMergeScores line 2236 talking about line 2263:
“don't need to deal with scale factor because we divide below”.

16 | edu.berkeley.nlp.PCFGLA.GrammarTrainer.main line 406 and
edu.berkeley.nlp.PCFGLA.GrammarMerger.determineMergePairs lines 436–533.

17 | edu.berkeley.nlp.PCFGLA.GrammarTrainer.main line 408,
edu.berkeley.nlp.PCFGLA.GrammarMerger.doTheMerges lines 311–377, and
edu.berkeley.nlp.PCFGLA.Grammar.mergeStates lines 2287–2444.

18 | edu.berkeley.nlp.PCFGLA.Grammar.mergeStates lines 2351–2353 and lines 2411–2413.
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dependency structures [cf. GNV17]. It might be valuable to transfer the state splitting and
merging approach to even more formalisms. We hope that the formalization presented in this
work will help in this process.
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6. Count-Based State Merging

This chapter is a substantially extended version of the following paper:
Toni Dietze and Mark-Jan Nederhof.

“Count-based State Merging for Probabilistic Regular Tree Grammars” [DN15]

In the previous chapter, we introduced the state splitting and merging algorithm (Algo-
rithm 5.1, page 73), which, given a corpus and a ℙ-wta with only a few states, produces a
sequence of ℙ-wtas with an increasing number of states. Each of these wtas is trained on the
corpus using the EM algorithm. In other words, the EM algorithm is applied to models with
increasing model complexity, resulting in a sequence of wtas that induce an increasing likeli-
hood of the corpus.
In this chapter we present the count-based state merging algorithm (cbsm), which takes the

inverse direction: The algorithm starts with a model with a high model complexity and the
model complexity is reduced step by step. Each model consists of probability distributions
induced by wtas in prob(ℳ) for a 𝔹-wta ℳ. We demand that ℳ is bottom-up deterministic,
which implies that for each tree there is at most one non-zero weighted run of ℳ on the tree.
This property makes the maximum likelihood estimationmle𝑐(ℳ) for a tree corpus 𝑐 very easy
(cf. Theorem 6.1.4), which saves us from using the computationally expensive EM algorithm.
The algorithm is sketched in Figure 6.1. Its only input is a tree corpus 𝑐. It produces a finite

sequence ℳℙ
0 , …, ℳℙ

𝑚 of probabilistic ℙ-wtas such that L(𝑐 ∣ ℳℙ
𝑖−1) ≥ L(𝑐 ∣ ℳℙ

𝑖 ) for every
𝑖 ∈ [𝑚]. Internally also a sequence ℳ𝔹

0 , …, ℳ𝔹
𝑚 of 𝔹-wtas is produced. The initial 𝔹-wta ℳ𝔹

0
is the canonical 𝔹-wta of 𝑐, which is a 𝔹-wta that accepts exactly the trees from the corpus.
Starting with the counter 𝑖 = 0, the following steps are iterated:

1. The maximum likelihood estimate ℳℙ
𝑖 = mle𝑐(ℳ𝔹

𝑖 ) is calculated.

2. Based on the corpus, an ℳ𝔹
𝑖 -merger 𝜋 is chosen by bestMerger such that

• 𝜋 is non-trivial, i.e., there are two states 𝑞1 ≠ 𝑞2 such that 𝜋(𝑞1) = 𝜋(𝑞2),
• 𝜋(ℳ𝔹

𝑖 ) is bottom-up deterministic, and
• the likelihood of 𝑐 under mle𝑐(𝜋(ℳ𝔹

𝑖 )) is preferably large,

where 𝜋(ℳ𝔹
𝑖 ) denotes the1 faithful 𝜋-merge of ℳ𝔹

𝑖 .

3. The wta ℳ𝔹
𝑖+1 is set to the1 faithful 𝜋-merge of ℳ𝔹

𝑖 . The counter 𝑖 is incremented.

The iteration continues as long as there are non-trivial ℳ𝔹
𝑖 -mergers, i.e., ℳ𝔹

𝑖 has more than
one state.
For the first ℙ-wta, we have that ⟦ℳℙ

0⟧ is the empirical distribution of 𝑐. There is no prob-
ability distribution that induces a higher likelihood of 𝑐 (cf. Theorem 4.2.1), so the algorithm

1 | For a 𝔹-wta ℳ and an ℳ-merger 𝜋, there is exactly one faithful 𝜋-merge of ℳ.
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ℳ𝔹
𝑖 mle ℳℙ

𝑖

corpus

apply merge 𝜋 bestMerger

𝑖 ≔ 0

𝑖 ≔ 𝑖 + 1

Figure 6.1.: Basic idea of the count-based state merging algorithm (cbsm, Algorithm 6.1,
page 94). The wta ℳ𝔹

0 is the canonical 𝔹-wta of the corpus.

starts with “maximal overfitting”. The algorithm then improves the generalization by merging
states step-by-step. At some point the calculated ℙ-wta will start to underfit the corpus. This
turning point may be found by hold-out validation.

Since the considered wtas are bottom-up deterministic, it is easy to count how often a transi-
tion is needed to accept each tree in the corpus. These counts can be used to directly determine
the likelihood of the corpus under the maximum likelihood estimate, which is needed by best-
Merger to determine the next merger. The maximum likelihood estimate itself is not needed
for that purpose. This is why the algorithm is called count-based.

If a wta returned by cbsm is later used for parsing sentences, then bottom-up determinism is
also an advantage: Finding the most probable tree with the sentence at its leaves is easy with
bottom-up determinism because we do not have to sum up the weights of several runs to get
the weight of a tree since there is at most one non-zero weighted run.

This Chapter In Section 6.1 we introduce some additional preliminaries. In Section 6.2 we
investigate the effect of merging on the likelihood under the maximum likelihood estimate.
In Section 6.3 we formally introduce the count-based state merging algorithm (cbsm, Algo-
rithm 6.1, page 94). By making several assumptions, we derive cbsm from the idea to find
the probabilistic ℙ-wta that induces the largest likelihood of the corpus, but only has at most a
given number of states. In Section 6.3.1 we show further adaptions to cbsm that might be bene-
ficial for practical implementations. In Section 6.4 we give a short overview about our practical
implementation of cbsm. This implementation is used in Section 6.5 to conduct experiments
with artificial wtas and tree languages. In Section 6.6 we conduct further experiments using
real world data from the Penn Treebank [MSM93]. In Section 6.7 we compare cbsm to the al-
gorithm for tree language inference from probabilistic samples (tlips, Algorithm 6.2, page 125)
of Carrasco, Oncina, and Calera-Rubio [COC01; COC98], which similarly takes a corpus as in-
put and outputs a bottom-up deterministic probabilistic ℙ-wta that results frommerging states
of the canonical wta. Despite the similarity at first glance, we will reveal major differences
between the two algorithms. Finally, we conclude the chapter in Section 6.8 and give some
further research ideas.

Acknowledgments Theauthor thanksMark-JanNederhof, the coauthor of the original pub-
lication [DN15], for the inspiring discussions about count-based state merging. He also thanks
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Sebastian Mielke, a former student, who was a great help for the execution and evaluation of
the experiments presented in Sections 6.5 and 6.6.

RelatedWork The tlips algorithm [COC01; COC98] is a generalization of a similar approach
for learning deterministic stochastic finite (string) automata from text [CO94; CO99]. For
the tree case, Fernau [Fer02; Fer07] presents another approach, but only for function distin-
guishable regular tree languages. There is also a generalization of 𝑛-grams to trees including
smoothing techniques [RCC00; RCC02]. An approach similar to tlips, but for general (i.e., not
necessarily bottom-up deterministic) probabilistic tree automata, was presented by Denis and
Habrard [DH07].

6.1. Preliminaries

We continue using the concept of merging introduced in Section 5.1. For a merger 𝜋 we will
only write 𝜋 instead of merge𝜋 since we only deal with merging and do not consider splitting
in the current chapter. Let ℳ be a 𝔹-wta and 𝜋 be an ℳ-merger. Because of the Boolean
semiring, there is exactly one faithful 𝜋-merge of ℳ, which we will denote by 𝜋(ℳ).
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a wta. We call ℳ bottom-up deterministic if rhs(𝜏1) = rhs(𝜏2)

implies lhs(𝜏1) = lhs(𝜏2) for every 𝜏1, 𝜏2 ∈ supp(𝛥). If ℳ is bottom-up deterministic, then
it is easy to see that for every tree there is at most one non-zero weighted run of ℳ on that
tree. This run can be easily determined by puzzling together non-zero weighted transitions,
starting at the leafs, working towards the root. When working bottom to top in this way, then
at every step there will be at most one fitting transition with a non-zero weight; hence the
name “bottom-up deterministic”.
For the Boolean semiring 𝔹, bottom-up determinism does not restrict the power of 𝔹-wtas:

Theorem 6.1.1 (Gécseg and Steinby [GS84, Chapter Ⅱ, Theorem 2.6; GS15, Theorem 2.2.6]).
For every 𝔹-wta ℳ there is a bottom-up deterministic 𝔹-wta ℳ′ such that ⟦ℳ⟧ = ⟦ℳ′⟧.

Unfortunately, this does not hold for every semiring.

Theorem 6.1.2 (Borchardt and Vogler [BV03, Lemma 6.3]). There is a semiring ℛ and an ℛ-wta
ℳ such that for every bottom-up deterministic ℛ-wta ℳ′ we have ⟦ℳ⟧ ≠ ⟦ℳ′⟧.

In particular, Borchardt and Vogler [BV03, Lemma 6.3] use a ℙ-wta in their proof, but not a
probabilistic one.
We note that a (semi-)probabilistic and bottom-up deterministic ℙ-wta can have weights

which are different from 0 and 1. This is because semi-probabilistic and bottom-up determinis-
tic are defined in opposite directions: The former concerns transitions with the same left-hand
side while the latter concerns transitions with the same right-hand side.

Example 6.1.3. We define the ℙ-wta ℳ = ({𝑞0, 𝑞1}, {𝛾(1), 𝛼(0)}, 𝐼, 𝛥) where the non-zero
weights of 𝐼 and 𝛥 are given by

1⟶ 𝑞0 𝑞0
1⟶ 𝛾(𝑞1) 𝑞1

1/3⟶ 𝛾(𝑞0)

𝑞1
2/3⟶ 𝛼.
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We note that ℳ is both semi-probabilistic and bottom-up deterministic. Nevertheless ℳ has
weights different from 0 and 1.

Let 𝑡 = 𝛾(𝛾(𝛾(𝛼))). The only non-zero weighted run of ℳ on 𝑡 is 𝑞0(𝑞1(𝑞0(𝑞1))).

Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a bottom-up deterministic wta. Note that for every 𝑡 ∈ T𝛴 there
is at most one run 𝑟 ∈ runℳ(𝑡) such that ⟦ℳ⟧(𝑡, 𝑟) ≠ 0. Assuming there is such a run, we
denote this run by r𝑡

ℳ.
Let 𝑐 be a corpus over T𝛴 such that supp(𝑐) ⊆ supp(⟦ℳ⟧). Note that for every 𝑡 ∈ supp(𝑐)

there is exactly one non-zero weighted run r𝑡
ℳ ofℳ on 𝑡. Based onℳ, we derive three corpora

from 𝑐:

𝑐Δℳ : dom(𝛥) → ℝ≥0, 𝜏 ↦ ∑
𝑡∈supp(𝑐)

𝑐(𝑡) · |{𝜌 ∈ pos(𝑡) ∣ 𝜏 = trans𝜌(𝑡, r𝑡
ℳ)}|,

𝑐Qℳ : 𝑄 → ℝ≥0, 𝑞 ↦ ∑
𝑡∈supp(𝑐)

𝑐(𝑡) · |{𝜌 ∈ pos(𝑡) ∣ 𝑞 = r𝑡
ℳ(𝜌)}|,

𝑐Iℳ : 𝑄 → ℝ≥0, 𝑞 ↦ ∑
𝑡∈supp(𝑐):
𝑞=r𝑡ℳ(𝜀)

𝑐(𝑡).

Note that for every 𝑞 ∈ 𝑄

𝑐Qℳ(𝑞) = ∑
𝜏∈dom(𝛥):

𝑞=lhs(𝜏)

𝑐Δℳ(𝜏), and (6.1)

𝑐Qℳ(𝑞) = 𝑐Iℳ(𝑞) + ∑
𝜏∈dom(𝛥),

(𝑞0→𝜎(𝑞1,…,𝑞𝑘))=𝜏

|𝑞1…𝑞𝑘|𝑞 ⋅ 𝑐Δℳ(𝜏). (6.2)

These corpora can be used to find the maximum likelihood estimate given a bottom-up deter-
ministic wta:

Theorem 6.1.4 (cf. Prescher [Pre04, Theorem 10]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a bottom-up
deterministic wta and 𝑐 a corpus over T𝛴 such that supp(𝑐) ⊆ supp(⟦ℳ⟧). Then mle𝑐(ℳ) =
(𝑄, 𝛴, ̂𝐼, ̂𝛥) where

̂𝐼(𝑞) =
𝑐Iℳ(𝑞)

|𝑐|
and ̂𝛥(𝜏) =

𝑐Δℳ(𝜏)
𝑐Qℳ(lhs(𝜏))

for every 𝑞 ∈ 𝑄 and 𝜏 ∈ dom( ̂𝛥).

Let 𝛴 be a ranked alphabet and 𝐶 ⊆ T𝛴 a finite, non-empty set. The canonical 𝔹-wta of 𝐶
is defined as ℳ = (𝑄, 𝛴, 𝐼, 𝛥) where

𝑄 = subs(𝐶), 𝐼 = 𝐶, and 𝛥 = {𝑡|𝜀 → (𝑡(𝜀))(𝑡|1, …, 𝑡|rk(𝑡(𝜀))) ∣ 𝑡 ∈ 𝑄}.

Note that every canonical wta is bottom-up deterministic and that r𝑡
ℳ(𝜌) = 𝑡|𝜌 for every

𝑡 ∈ 𝑄 and 𝜌 ∈ pos(𝑡). Also note that supp(⟦𝑀⟧) = 𝐶. Let 𝑐 be a corpus over T𝛴 and
ℳ𝔹 = (𝑄, 𝛴, 𝐼𝔹, 𝛥𝔹) the canonical 𝔹-wta of supp(𝑐). The canonical ℙ-wta of 𝑐 is defined as
mle𝑐(ℳ𝔹). Note that for the canonical ℙ-wta ℳℙ = (𝑄, 𝛴, 𝐼ℙ, 𝛥ℙ) of 𝑐 we have
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• 𝐼ℙ(𝑡) = 𝑐(𝑡)
|𝑐| for every 𝑡 ∈ 𝑄, and

• 𝛥ℙ(𝜏) = 1 for every 𝜏 ∈ 𝛥𝔹 and 𝛥ℙ(𝜏) = 0 otherwise.

Hence, ⟦ℳℙ⟧(𝑡) = 𝐼ℙ(𝑡) for every 𝑡 ∈ 𝑄 and ⟦ℳℙ⟧ is the empirical distribution of 𝑐.
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a wta and 𝐶 ⊆ T𝛴. Intuitively, the restriction of ℳ to 𝐶 is the wta

resulting from ℳ by setting each weight to 0 that is not needed in any non-zero weighted run
on any tree from 𝐶. Formally it is defined by restrict𝐶(ℳ) = (𝑄′, 𝛴, 𝐼′, 𝛥′) where letting
runs = {(𝑡, 𝑟) ∈ runℳ ∣ 𝑡 ∈ 𝐶, ⟦ℳ⟧(𝑡, 𝑟) ≠ 0} we have

• 𝑄′ = {𝑞 ∈ 𝑄 ∣ ∃(𝑡, 𝑟) ∈ runs : ∃𝜌 ∈ pos(𝑟) : 𝑟(𝜌) = 𝑞},2

• 𝐼′(𝑞) = {
𝐼(𝑞) if there are (𝑡, 𝑟) ∈ runs such that 𝑟(𝜀) = 𝑞, and
0 otherwise, and

• 𝛥′(𝜏) = {
𝛥(𝜏) if there are (𝑡, 𝑟) ∈ runs and 𝜌 ∈ pos(𝑡) such that trans𝜌(𝑡, 𝑟) = 𝜏,
0 otherwise.

We call ℳ 𝐶-restricted if ℳ = restrict𝐶(ℳ). For every 𝑡 ∈ T𝛴 note that 𝑡 ∈ 𝐶 implies
⟦restrict𝐶(ℳ)⟧(𝑡) = ⟦ℳ⟧(𝑡), but 𝑡 ∉ 𝐶 does not generally imply ⟦restrict𝐶(ℳ)⟧(𝑡) = 0.

Corollary 6.1.5. Let 𝛴 be a ranked alphabet, 𝑐 a corpus over T𝛴, and ℳ be a bottom-up deter-
ministic wta with terminal alphabet 𝛴. Then we have

⟦restrictsupp(𝑐)(mle𝑐(ℳ))⟧ = ⟦mle𝑐(ℳ)⟧.

Proof. By Theorem 6.1.4 it is obvious that the restriction of mle𝑐(ℳ) to supp(𝑐) only removes
states that have root weight 0 and that only occur in transitions with weight 0 while leaving
all other weights unchanged. Therefore the corollary follows immediately. q.e.d.

Theorem 6.1.6. Let 𝛴 be a ranked alphabet, 𝐶 ⊆ T𝛴 a finite, non-empty set, and ℳ𝐶 the
canonical 𝔹-wta of 𝐶. Then for every 𝐶-restricted, bottom-up deterministic 𝔹-wta ℳ with the
terminal alphabet 𝛴 such that 𝐶 ⊆ ⟦ℳ⟧ there is an ℳ𝐶-merger 𝜋 such that

ℳ = 𝜋(ℳ𝐶).

6.2. The Likelihood of the Maximum Likelihood Estimate and
Its Behavior While Merging

As indicated in the introduction, merging of bottom-up deterministic wtas plays an important
role in this chapter. In this section we investigate the effect of merging on the likelihood of a
corpus under the maximum likelihood estimate; that means, given a corpus 𝑐, a 𝔹-wta ℳ, and
an ℳ-merger 𝜋, we compare L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) and L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧). We consider this

2 | Note that 𝑄′ might be empty. However, the definition of wtas is restricted to non-empty sets of states for
technical reasons. Since these reasons do not apply in the current context, we drop this restriction for now.

restrict

proven on page 177
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comparison while demanding that ℳ is bottom-up deterministic (Theorem 6.2.1), and while
demanding that both ℳ and 𝜋(ℳ) are bottom-up deterministic (Conjecture 6.2.2). We will
also show how L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) can be easily determined if ℳ is bottom-up deterministic
(Lemma 6.2.3).

Intuitively, one might expect that merging cannot improve the likelihood because reducing
the number of states seems to reduce the possibilities to fit a corpus. It turns out that this
intuition is wrong:

Theorem 6.2.1. There is a bottom-up deterministic 𝔹-wta ℳ, an ℳ-merger 𝜋, and a corpus 𝑐
such that supp(𝑐) ⊆ ⟦ℳ⟧ and

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) < L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧).

Note that 𝜋(ℳ) is not necessarily bottom-up deterministic.

Proof. The wtas in this proof originated from a discussion with Markus Teichmann [Tei17].
Let 𝛴 = {𝛼(0), 𝛽(0), 𝛾(1)} be a ranked alphabet and let 𝑐 be a corpus over T𝛴 such that

𝑐(𝛾(𝛾(𝛼))) = 1 and 𝑐(𝛾(𝛾(𝛽))) = 1.

Let ℳ1 = (𝑄1, 𝛴, 𝐼1, 𝛥1) be the ℙ-wta with 𝑄1 = {𝑞1, 𝑞2, 𝑞3} and the following non-zero
root and transition weights:

1/2⟶ 𝑞1 𝑞1
1/2⟶ 𝛼 𝑞3

1/3⟶ 𝛽
1/2⟶ 𝑞3 𝑞1

1/2⟶ 𝛾(𝑞2) 𝑞3
2/3⟶ 𝛾(𝑞3)

𝑞2
1⟶ 𝛾(𝑞1) .

Note that ℳ1 is bottom-up deterministic. We will use ℳ = crisp(ℳ1) to show the theorem.
Let ℳ2 = (𝑄2, 𝛴, 𝐼2, 𝛥2) be the ℙ-wta with 𝑄2 = {𝑞1, 𝑞2} and the following weights:

1⟶ 𝑞1 𝑞1
1/4⟶ 𝛼 𝑞1

1/4⟶ 𝛽

𝑞1
1/2⟶ 𝛾(𝑞2) 𝑞1

0⟶ 𝛾(𝑞1)

𝑞2
1⟶ 𝛾(𝑞1) .

Note that ℳ2 is a 𝜋-merge of ℳ1 where 𝜋(𝑞1) = 𝜋(𝑞3) = 𝑞1 and 𝜋(𝑞2) = 𝑞2. Incidentally,
ℳ2 is bottom-up deterministic, but 𝜋(crisp(ℳ1)) is not bottom-up deterministic.

Intuitively, ℳ1 has the ability to distinguish trees with an even number of 𝛾 symbols from
those with an odd number, but only if they have an 𝛼 leaf. Therefore ℳ1 “wastes” probability
mass on trees with 𝛽 leaf and an uneven number of 𝛾 symbols. By merging with 𝜋, the ability
of ℳ1 to distinguish even from odd numbers of 𝛾 symbols for trees with 𝛼 leaf is also made
available for trees with 𝛽 leaf. This is the intuitive reason for L(𝑐 ∣ ⟦ℳ2⟧) being larger than
L(𝑐 ∣ ⟦ℳ1⟧); we will calculate the exact likelihoods in the following.
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6.2. The Likelihood of the Maximum Likelihood Estimate and Its Behavior While Merging

We now show that the theorem holds for the 𝔹-wta ℳ = crisp(ℳ1), the ℳ-merger 𝜋, and
the corpus 𝑐. We have that supp(𝑐) ⊆ ⟦ℳ⟧. We also have that ℳ (and ℳ1) is bottom-up
deterministic and that ℳ1 = mle𝑐(ℳ). The likelihood of 𝑐 under ℳ1 is

L(𝑐 ∣ ⟦ℳ1⟧) = 1
2

⋅ 1
2

⋅ 1 ⋅ 1
2⏟⏟⏟⏟⏟

⟦ℳ1⟧(𝛾(𝛾(𝛼)))= 1
8

⋅ 1
2

⋅ 2
3

⋅ 2
3

⋅ 1
3⏟⏟⏟⏟⏟

⟦ℳ1⟧(𝛾(𝛾(𝛽)))= 2
27

= 1
108

.

The likelihood of 𝑐 under ℳ2 is

L(𝑐 ∣ ⟦ℳ2⟧) = 1 ⋅ 1
2

⋅ 1 ⋅ 1
4⏟⏟⏟⏟⏟

⟦ℳ2⟧(𝛾(𝛾(𝛼)))= 1
8

⋅ 1 ⋅ 1
2

⋅ 1 ⋅ 1
4⏟⏟⏟⏟⏟

⟦ℳ2⟧(𝛾(𝛾(𝛽)))= 1
8

= 1
64

.

Since ℳ2 ∈ prob(𝜋(ℳ)), by the definition of mle we have that

L(𝑐 ∣ ⟦ℳ2⟧) ≤ L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧)

and therefore

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) = L(𝑐 ∣ ⟦ℳ1⟧) < L(𝑐 ∣ ⟦ℳ2⟧) ≤ L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧). q.e.d.

Note that this proof exploits the fact that 𝜋(ℳ) does not have to be bottom-up deterministic.
We conjecture: If we had additionally required that 𝜋(ℳ) is bottom-up deterministic, then
Theorem 6.2.1 would not hold.

Conjecture 6.2.2. Let ℳ be a 𝔹-wta, 𝜋 an ℳ-merger, and 𝑐 a corpus such that supp(𝑐) ⊆ ⟦ℳ⟧.
If ℳ and 𝜋(ℳ) are bottom-up deterministic, then

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) ≥ L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧).

Unfortunately, we were not able to prove or refute the conjecture. In Appendix D on page 177
we give some details about the difficulties we faced.
Independently from Conjecture 6.2.2, bottom-up determinism allows us to calculate the like-

lihood of the maximum likelihood estimate directly.

Lemma 6.2.3 (Dietze and Nederhof [DN15, Equation 2]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a bottom-
up deterministic 𝔹-wta and 𝑐 a corpus over T𝛴 such that supp(𝑐) ⊆ ⟦ℳ⟧. Then we have

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) =
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

|𝑐||𝑐| ·
∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ

ℳ(𝜏)

∏𝑞∈𝑄 𝑐Qℳ(𝑞)
𝑐Q

ℳ(𝑞)
.

Lemma 6.2.3 and Theorem 6.1.4 rely on the three corpora 𝑐Qℳ, 𝑐Iℳ, and 𝑐Δℳ. Now assume
that ℳ resulted from the application of a merger to another bottom-up deterministic wta. In
that case we can (re)use the three corpora for the other wta to determine the corpora for ℳ.

proven on page 178
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6. Count-Based State Merging

Observation 6.2.4 (Dietze and Nederhof [DN15, Equation 3]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a
bottom-up deterministic 𝔹-wta and 𝑐 a corpus over T𝛴 such that supp(𝑐) ⊆ ⟦ℳ⟧. Also let 𝜋 be an
ℳ-merger such that 𝜋(ℳ) is bottom-up deterministic and let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) = 𝜋(ℳ).
Then we have

𝑐Δℳ′(𝜏 ′) = ∑
𝜏∈dom(𝛥): 𝜏′=𝜋(𝜏)

𝑐Δℳ(𝜏),

𝑐Qℳ′(𝑞′) = ∑
𝑞∈𝑄: 𝑞′=𝜋(𝑞)

𝑐Qℳ(𝑞), and

𝑐Iℳ′(𝑞′) = ∑
𝑞∈𝑄: 𝑞′=𝜋(𝑞)

𝑐Iℳ(𝑞)

for every 𝜏 ′ ∈ dom(𝛥′) and 𝑞′ ∈ 𝑄′.

The observation is easy to see since bottom-up determinism allows us to derive r𝑡
ℳ′ for every

𝑡 ∈ supp(𝑐) by replacing every state 𝑞 in r𝑡
ℳ by 𝜋(𝑞).

6.3. The Count-Based State Merging Algorithm

In this section we derive the count-based state merging algorithm (Algorithm 6.1). We start by
motivating an initial problem (Equation (6.3)) that we would like to solve. We then change this
problem step-by-step into simpler problems by introducing several assumptions until we end
up with the final algorithm (Algorithm 6.1).

Let 𝑐 be a corpus of trees. Considering all probability distributions over trees, recall that
the empirical distribution of 𝑐 maximizes the likelihood of 𝑐 (cf. Theorem 4.2.1). The canonical
ℙ-wta of 𝑐 represents the empirical distribution of 𝑐. Therefore it is a probabilistic ℙ-wta that
maximizes the likelihood of 𝑐, i.e., there is no other probabilistic ℙ-wta with a higher likelihood
of 𝑐.

The canonical wta assigns a non-zero weight only to those trees that are in the support of
the corpus. This is not very useful in practice because we want to generalize the corpus, i.e.,
we want a wta that accepts more trees than there are in the corpus, but still enforces important
properties that can be observed in the corpus. A way to achieve this is to consider only wtas
with a restricted number of states and choose the one that maximizes the likelihood. Since we
do not know what number of states is appropriate, we do this for every number of states that
is smaller or equal than the number of states of the canonical wta.

Formally, let 𝑛 be the number of states of the canonical wta of 𝑐. By definition of the canoni-
cal wta, we have that 𝑛 = |subs(supp(𝑐))|. For every 𝑖 ∈ [𝑛] let 𝑴𝑖 be the set of all probabilis-
tic ℙ-wtas with at most 𝑖 states. We define the sequence ℳ𝑛, ℳ𝑛−1, …, ℳ1 of probabilistic
ℙ-wtas where for every 𝑖 ∈ [𝑛]

ℳ𝑖 = argmax
ℳ∈𝑴𝑖

L(𝑐 ∣ ⟦ℳ⟧). (6.3)

Note that L(𝑐 ∣ ⟦ℳ𝑖+1⟧) ≥ L(𝑐 ∣ ⟦ℳ𝑖⟧) for every 𝑖 ∈ [𝑛 − 1] because 𝑴𝑖+1 ⊇ 𝑴𝑖. Also note
that ℳ𝑛 is the canonical ℙ-wta and that we cannot get a better likelihood by allowing more
than 𝑛 states because ℳ𝑛 represents the empirical distribution (see above).
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6.3. The Count-Based State Merging Algorithm

Let us call the sequence ℳ𝑛, …, ℳ1 of wtas the canonical wta-sequence of 𝑐. For practical
applications we could choose a single wta from the sequence that fits the application best. But
the calculation of this sequence is not practically feasible at all. Therefore we will now make
several assumptions to successively create simpler problems until we arrive at a problem that
can be practically solved.

Assumption 6.3.1. The wtas in the canonical wta-sequence are bottom-up deterministic.

This means that for every 𝑖 ∈ [𝑛] we remove all wtas from 𝑴𝑖 that are not bottom-up deter-
ministic. For the next step, we also need the following lemma, which allows us to decompose
an argmax operation.

Lemma 6.3.2. Let 𝐴 and 𝐵 be sets, 𝑙 : 𝐴 → ℝ a mapping, 𝑤 ⊆ 𝐵 × 𝐴 a relation such that
𝑤(𝐵) = 𝐴 and 𝑤(𝑏) ≠ ∅ for every 𝑏 ∈ 𝐵, and let 𝑚 ⊆ 𝑤 be the relation such that 𝑚(𝑏) =
argmax𝑎∈𝑤(𝑏) 𝑙(𝑎) for every 𝑏 ∈ 𝐵. Then we have

𝑚(argmax
𝑏∈𝐵

𝑙(𝑚(𝑏))) = argmax
𝑎∈𝐴

𝑙(𝑎).

We now use Assumption 6.3.1 and Lemma 6.3.2 to rewrite the problem. For every 𝑖 ∈ [𝑛] let
𝑴𝔹

𝑖 be the set of all bottom-up deterministic 𝔹-wtaswith at most 𝑖 states. By Assumption 6.3.1
we have that 𝑴𝑖 = prob(𝑴𝔹

𝑖 ) for every 𝑖 ∈ [𝑛] (cf. Section 4.4 for definition of prob). By
definition of the maximum likelihood estimate and by Lemma 6.3.2, we can rewrite the current
problem as follows, where the lemma is instantiated with 𝐴 = 𝑴𝑖, 𝐵 = 𝑴𝔹

𝑖 , 𝑙 = L(𝑐 ∣ ⟦⋅⟧),
𝑤 = prob(⋅), and 𝑚 = mle𝑐(⋅): For every 𝑖 ∈ [𝑛]

ℳ𝑖 = mle𝑐(ℳ𝔹
𝑖 ) where ℳ𝔹

𝑖 = argmax
ℳ∈𝑴𝔹

𝑖

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧).

Although this looks much more complicated than before, bottom-up determinism allows us to
cut corners. By Theorem 6.1.4 we may directly calculate the maximum likelihood estimate
mle𝑐(ℳ) for a given bottom-up deterministic wta ℳ. Also, by Lemma 6.2.3, its likelihood
L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) can be calculated directlywithout explicitly calculatingmle𝑐(ℳ) first. These
calculations solely rest on counts that are derived from the corpus. This property will also be
important for our final algorithm; in fact we find this important enough to call the algorithm
count-based.
Considering Corollary 6.1.5 we can cut down𝑴𝑖 and𝑴𝔹

𝑖 even further by only allowingwtas
that are restricted to supp(𝑐). This allows us to apply Theorem 6.1.6 and we can reformulate
the current problem again: Let ℳ𝑐 be the canonical 𝔹-wta of 𝑐 and for every 𝑖 ∈ [𝑛] let 𝛱𝑖 be
the set of ℳ𝑐 mergers 𝜋 such that 𝜋(ℳ𝑐) is bottom-up deterministic and has at most 𝑖 states.
For every 𝑖 ∈ [𝑛] we have

ℳ𝑖 = mle𝑐(𝜋𝑖(ℳ𝑐)) where 𝜋𝑖 = argmax
𝜋∈𝛱𝑖

L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ𝑐))⟧).

Let us now take another view onmergers. Letℳ be a𝔹-wta and let𝜋1 and𝜋2 beℳ-mergers.
If ker𝜋1 = ker𝜋2, then 𝜋1(ℳ) is isomorphic to 𝜋2(ℳ). For our problem we do not need to
distinguish between isomorphic wtas. Therefore we can identify 𝜋1 and 𝜋2 and just consider

proven on page 180

91



6. Count-Based State Merging

their kernel. The kernel of a mapping is an equivalence relation and for every equivalence
relation (≡) there is a merger 𝜋 such that ker𝜋 = (≡), e.g., by letting 𝜋(𝑞) = [𝑞]≡ for every
state 𝑞 ∈ dom(≡).

Therefore we can reformulate the problem again by using equivalence relations to represent
mergers. Let (≡) be an equivalence relation on some set 𝑄. Themerger w.r.t. (≡) is defined by
π≡(𝑞) = [𝑞] for every 𝑞 ∈ 𝑄. Let ℳ𝑐 be the canonical 𝔹-wta of 𝑐 and for every 𝑖 ∈ [𝑛] let 𝐸𝑖
be the set of equivalence relations (≡) on the state set of ℳ𝑐 such that π≡(ℳ𝑐) is bottom-up
deterministic and has at most 𝑖 states. For every 𝑖 ∈ [𝑛] we have

ℳ𝑖 = mle𝑐(π≡𝑖
(ℳ𝑐)) where (≡𝑖) = argmax

(≡)∈𝐸𝑖

L(𝑐 ∣ ⟦mle𝑐(π≡(ℳ𝑐))⟧).

In our further considerations we call a merger 𝜋 trivial if ker𝜋 = id. Consequently, we also
call an equivalence relation trivial if it is an identity relation.

Up to now, for every 𝑖 ∈ [𝑛], the search of ℳ𝑖 uses ℳ𝑐 as its basis. But there are many
supp(𝑐)-restricted 𝔹-wtas ℳ that may be reached in several intermediate steps, i.e., ℳ =
𝜋𝑗(…(𝜋1(ℳ𝑐))…) for 𝑗 ∈ ℕwhere 𝜋𝑗, …, 𝜋1 are non-trivial mergers such that for every 𝑘 ∈ [𝑗]
the wta 𝜋𝑘(…(𝜋1(ℳ𝑐))…) is bottom-up deterministic.

Assumption 6.3.3. Let ℳ𝑛, …, ℳ1 be the canonical wta-sequence for some corpus (Equa-
tion (6.3)). Assume that for every 𝑖 ∈ [𝑛 − 1] there is an ℳ𝑖+1-merger 𝜋𝑖 such that ℳ𝑖 is a
𝜋𝑖-merge of ℳ𝑖+1.

This is a rather bold assumption that changes the problem significantly. Nevertheless we make
this assumption because it allows us to formulate the problem recursively:

ℳ𝑖 = mle𝑐(π≡𝑖
(ℳ𝑖+1)) where (≡𝑖) = argmax

(≡)∈𝐸𝑖

L(𝑐 ∣ ⟦mle𝑐(π≡(ℳ𝑖+1))⟧)

for every 𝑖 ∈ [𝑛 − 1] where ℳ𝑛 is the canonical 𝔹-wta of 𝑐 and 𝐸𝑖 is the set of equivalence
relations (≡) on the state set of ℳ𝑖+1 such that π≡(ℳ𝑖+1) is bottom-up deterministic and has
at most 𝑖 states.

In other words, we now employ a greedy strategy where we apply mergers consecutively
instead of applying every merger to ℳ𝑐. Note that there may be some 𝑖 ∈ [𝑛 − 1] such that
ℳ𝑖+1 has less than 𝑖 + 1 states and, hence, (≡𝑖) and π≡𝑖

are trivial and ℳ𝑖 is isomorphic to
ℳ𝑖+1. Again, there is no practical use in having several isomorphic wtas, therefore we redefine
our sequence of wtas and do not allow trivial mergers.

ℳ′
𝑖 = mle𝑐(π≡𝑖

(ℳ′
𝑖−1)) where (≡𝑖) = argmax

(≡)∈𝐸′
𝑖

L(𝑐 ∣ ⟦mle𝑐(π≡(ℳ′
𝑖−1))⟧)

for every 𝑖 ∈ [𝑚] where ℳ′
0 is the canonical 𝔹-wta of 𝑐 and 𝐸′

𝑖 is the set of non-trivial equiv-
alence relations (≡) on the state set of ℳ′

𝑖−1 such that π≡(ℳ′
𝑖−1) is bottom-up deterministic.

We let 𝑚 ∈ ℕ be maximal such that the sequence ℳ′
1, …, ℳ′

𝑚 is well defined. Hence ℳ′
𝑚

has only one state and therefore there are only trivial ℳ′
𝑚-mergers.

Note that the indices of the wtas do not correspond to their number of states anymore. Also
note that the indexing now is the other way around, i.e., ℳ′

0 = ℳ𝑛 is the canonical wta and
ℳ′

𝑚 is isomorphic to ℳ1.
Next, we further reduce the search space, i.e., we reduce the sets 𝐸′

𝑖 for every 𝑖 ∈ [𝑚].
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6.3. The Count-Based State Merging Algorithm

Assumption 6.3.4. Conjecture 6.2.2 is true.

This assumption implies: If there are (≡1), (≡2) ∈ 𝐸′
𝑖 with (≡1) ⊆ (≡2), i.e., there is a merger

𝜋 such that π≡2
= 𝜋 ∘ π≡1

, then L(𝑐 ∣ ⟦mle𝑐(π≡1
(ℳ𝑖−1))⟧) ≥ L(𝑐 ∣ ⟦mle𝑐(π≡2

(ℳ𝑖−1))⟧).
Therefore, since we maximize the likelihood, we can ignore (≡2).
Formally, let 𝐸 be a set of equivalence relations on a set. An equivalence relation (≡) ∈ 𝐸

is called minimal (in 𝐸) if there is no (≡′) ∈ 𝐸 such that (≡′) ⊊ (≡).3 Analogously, let 𝛱
be a set of mergers for some fixed wta. We call a merger 𝜋 ∈ 𝛱 minimal (in 𝛱) if there is no
𝜋′ ∈ 𝛱 such that ker𝜋′ ⊊ ker𝜋. In other words, if 𝜋 is minimal in 𝛱, then there is no merger
𝜋1 ∈ 𝛱 such that 𝜋 = 𝜋2 ∘ 𝜋1 for some non-trivial merger 𝜋2.
Let ℳ be a wta and (≡) an equivalence relation on the states of ℳ. To simplify our wording

in the following, we say (≡) is suitable (for ℳ) if (≡) is non-trivial and π≡(ℳ) is bottom-up
deterministic. Analogously, we say an ℳ-merger 𝜋 is suitable (for ℳ) if 𝜋 is non-trivial and
𝜋(ℳ) is bottom-up deterministic.
We now remove all elements from𝐸′

𝑖 that are notminimal, arriving at the following problem.

ℳ′
𝑖 = mle𝑐(π≡𝑖

(ℳ′
𝑖−1)) where (≡𝑖) = argmax

(≡)∈𝐸′
𝑖

L(𝑐 ∣ ⟦mle𝑐(π≡(ℳ′
𝑖−1))⟧) (6.4)

for every 𝑖 ∈ [𝑚] where ℳ′
0 is the canonical 𝔹-wta of 𝑐 and 𝐸′

𝑖 is the set of all minimal
suitable equivalence relations on the state set of ℳ′

𝑖−1. We let 𝑚 ∈ ℕ be maximal such that
the sequence is well defined.
The constraint to only consider minimal suitable mergers may reduce the number of con-

sidered mergers. However, in practice it is rather expensive to check if a merger is minimal.
Therefore we will also consider some mergers that are not minimal. Yet we will ensure that no
minimal suitable merger is missed and, hence, the resulting sequence of wtas is the one defined
above (assuming Conjecture 6.2.2 is true).
Let us take a step back and look at what we have done so far. We motivated our interest in

the canonical wta-sequence ℳ𝑛, …, ℳ1 of 𝑐 (Equation (6.3)), but unfortunately this sequence
is not practically computable, so we created simpler problems by introducing several assump-
tions. We finally arrived at the sequence ℳ′

0, …, ℳ′
𝑚 (Equation (6.4)), which is connected to

the canonical wta-sequence as follows:

Observation 6.3.5. Let 𝑐 be a corpus, let ℳ𝑛, …, ℳ1 be the canonical wta-sequence of 𝑐 (Equa-
tion (6.3)), and let ℳ′

0, …, ℳ′
𝑚 be the sequence defined by Equation (6.4) based on 𝑐. We have

• ℳ𝑛 = ℳ′
0 and ℳ1 = ℳ′

𝑚 up to isomorphism, and
• if Assumptions 6.3.1, 6.3.3 and 6.3.4 were true, then there would be 𝑗1, …, 𝑗𝑛 ∈ [𝑚] such
that 0 = 𝑗𝑛 ≤ 𝑗𝑛−1 ≤ … ≤ 𝑗2 ≤ 𝑗1 = 𝑚 and ℳ𝑖 = ℳ′

𝑗𝑖
up to isomorphism for every

𝑖 ∈ [𝑛].

Thecalculation of the sequenceℳ′
0, …, ℳ′

𝑚 seems cheap enough to beworth implementing.
This is done in Algorithm 6.1. We call the algorithm count-based state merging (cbsm) because

3 | Note that the subset relation (⊆) defines a partial order on sets. Therefore our definition of minimal is consistent
with the definition of minimal elements of partial orders. Also note that the set of equivalence relations on a
set is even a complete lattice ordered by the subset relation (⊆). For further information about partial orders
and lattices, we refer to other literature [e.g., Grä68; Grä79].
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Algorithm 6.1 Count-Based State Merging (CBSM)
Input: • corpus 𝑐 over T𝛴
Output: • sequence of bottom-up deterministic ℙ-wtas ℳℙ

0 , …, ℳℙ
𝑛 that is equal to the se-

quence defined in Equation (6.4) (also cf. Observation 6.3.5)
1: ℳ𝔹

0 ← canonical 𝔹-wta of 𝑐
2: ℳℙ

0 ← mle𝑐(ℳ𝔹
0) ▷ ℳℙ

0 is the canonical ℙ-wta of 𝑐
3: 𝑖 ← 0
4: while there exists a non-trivial ℳ𝔹

𝑖 -merger do
5: 𝜋 ← bestMerger(ℳ𝔹

𝑖 , 𝑐)
6: 𝑖 ← 𝑖 + 1
7: ℳ𝔹

𝑖 ← 𝜋(ℳ𝔹
𝑖−1)

8: ℳℙ
𝑖 ← mle𝑐(ℳ𝔹

𝑖 )

9: function bestMerger(ℳ, 𝑐)
10: 𝛱 ← mergercandidates(ℳ)
11: return argmax𝜋∈𝛱 L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧)

12: function mergercandidates(ℳ)
13: let 𝑄 be the set of states of ℳ
14: 𝐸 ← {saturate(ℳ, id𝑄 ∪ {(𝑞1, 𝑞2), (𝑞2, 𝑞1)}) ∣ {𝑞1, 𝑞2} ⊆ 𝑄, 𝑞1 ≠ 𝑞2}
15: return {π≡ ∣ (≡) ∈ 𝐸}

16: function saturate(ℳ, (≡0))
17: (≡) ← (≡0)
18: while π≡(ℳ) not bottom-up deterministic do
19: find non-zero weighted transitions 𝜏1 and 𝜏2 in ℳ such that

rhs(𝜏1) ≡ rhs(𝜏2), but
lhs(𝜏1) ≢ lhs(𝜏2)

20: (≡) ← (≡) ∪ {(𝑞1, 𝑞2), (𝑞2, 𝑞1) ∣ 𝑞1 ∈ [lhs(𝜏1)]≡, 𝑞2 ∈ [lhs(𝜏2)]≡}
21: return (≡)
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6.3. The Count-Based State Merging Algorithm

finding the best merger for a wta is based on the likelihood, which, by Lemma 6.2.3, can be
directly calculated from counts.
The function mergecandidates is crucial for cbsm (Algorithm 6.1); it finds all minimal suit-

able mergers (and possibly some more) for a wta. We will now detail, how and why this func-
tions works. Let ℳ be a wta and let (≡) be a minimal suitable equivalence relation on the state
set ofℳ. Also let (≡′) be a non-trivial equivalence relation such that (≡′) ⊆ (≡). If π≡′(ℳ) is
bottom-up deterministic, then (≡′) = (≡) because (≡) is minimal. Otherwise, if π≡′(ℳ) is not
bottom-up deterministic, then there are two non-zero weighted transitions 𝜏1 and 𝜏2 ofℳ such
that rhs(𝜏1) ≡′ rhs(𝜏2), but lhs(𝜏1) ≢′ lhs(𝜏2). Since (≡′) ⊆ (≡), we have rhs(𝜏1) ≡ rhs(𝜏2),
and since π≡(ℳ) is bottom-up deterministic, we have lhs(𝜏1) ≡′ lhs(𝜏2). Hence, we also have
(≡″) ⊆ (≡) where (≡″) = (≡′) ∪ {(𝑞1, 𝑞2), (𝑞2, 𝑞1) ∣ 𝑞1 ∈ [lhs(𝜏1)]≡′ , 𝑞2 ∈ [lhs(𝜏2)]≡′}, i.e.,
(≡″) is (≡′) with the added equivalence of 𝑞1 and 𝑞2.
These steps can now be applied again to (≡″) and iterated. Since (≡) is finite, after a finite

number of iterations, we have (≡″) = (≡). Also, since (≡) is non-trivial, there are two distinct
states 𝑞1 and 𝑞2 such that 𝑞1 ≡ 𝑞2 and we could start with (≡′) = id ∪ {(𝑞1, 𝑞2), (𝑞2, 𝑞1)}
and still reach (≡) with the above iteration. Since (≡) was arbitrary, every minimal suitable
merger can be reached in this way by starting with only two equivalent states. Also, starting
with two arbitrary equivalent states always leads to a unique minimal suitable merger, which
is formalized in the following lemma.

Lemma 6.3.6. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a 𝔹-wta, and let (≡) be an equivalence relation over
𝑄. Then there is a least (i.e. unique minimal) equivalence relation (≡̂) such that (≡) ⊆ (≡̂) and
π≡̂(ℳ) is bottom-up deterministic.

This way of finding all minimal suitable mergers is implemented in the functions merger-
candidates, which iterates over all pairs of states,4 and saturate, which accumulates states
to bemerged until themergedwta is bottom-up deterministic. Note that everymerger returned
by mergercandidates is a suitable merger, but not necessarily a minimal suitable merger.
However, every minimal suitable merger is returned.

6.3.1. Further Adjustments for Practical Implementations

In this section we introduce some adaptions to cbsm (Algorithm 6.1) to further reduce the
runtime of the algorithm.

Improving Efficiency of argmax Calculation Reconsider the maximization in line 11 of
cbsm (Algorithm 6.1) for another optimization:

argmax
𝜋∈𝛱

L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧).

4 | By “pair of states” or “state pair” we actually refer to an unordered pair {𝑞1, 𝑞2} of states such that 𝑞1 ≠ 𝑞2.
The order does not matter in the context of mergers and, since we only consider non-trivial mergers, the states
shall be distinct.

proven on page 180
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We may divide the maximized likelihood by L(𝑐 ∣ mle𝑐(ℳ)) without changing the result of
the argmax operation:

argmax
𝜋∈𝛱

L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧)
L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧)

. (6.5)

Intuitively, the fraction tells us the change in likelihood caused by merging.
Recall that the likelihood of themaximum likelihood estimate is just a large product of counts

(cf. Lemma 6.2.3). Therefore, in the fraction of likelihoods introduced in expression (6.5), for
many instantiations of 𝜋 many factors in the fraction cancel out. In detail: Let (≡) = ker𝜋,
and

𝑄 = {𝑞 ∈ 𝑄 ∣ |[𝑞]≡| > 1}, 𝑄′ = 𝜋(𝑄),
𝛥 = {𝜏 ∈ 𝛥 ∣ |[𝜏 ]≡| > 1}, and 𝛥′ = 𝜋(𝛥),

(6.6)

where (≡) is extended to transitions such that 𝜏1 ≡ 𝜏2 iff π≡(𝜏1) = π≡(𝜏2). Then, by
Lemma 6.2.3 and with ℳ′ = 𝜋(ℳ):

L(𝑐 ∣ ⟦mle𝑐(ℳ′)⟧)
L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧)

=
∏𝑞∈𝑄′ 𝑐Iℳ′(𝑞)𝑐I

ℳ′(𝑞)

∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I
ℳ(𝑞)

·
∏𝜏∈𝛥′ 𝑐Δℳ′(𝜏)𝑐Δ

ℳ′(𝜏)

∏𝜏∈𝛥 𝑐Δℳ(𝜏)𝑐Δ
ℳ(𝜏) ·

∏𝑞∈𝑄 𝑐Qℳ(𝑞)
𝑐Q

ℳ(𝑞)

∏𝑞∈𝑄′ 𝑐Qℳ′(𝑞)
𝑐Q

ℳ′(𝑞)
. (6.7)

This equation again shows nicely why we call the algorithm “count-based”: All calculations
are done based on the counts of states and transitions derived from the corpus. Even though
the algorithm outputs probabilistic ℙ-wtas, there is no need to explicitly calculate probabilities.

Heuristic Reduction of the Number of Considered Mergers Despite all assumptions
and optimizations so far, calculating the argmax operation in line 11 of cbsm (Algorithm 6.1)
exactly is still not feasible in practice for typical corpus sizes for the following reasons. The
number of states of the canonical wta equals the number of different subtrees in the corpus.
The function mergecandidates considers all pairs of distinct states to build up mergers. The
number of those pairs grows quadratic in the number of states of the wta. Unfortunately, it is
not practically feasible to consider all those pairs. Therefore we introduce an easily calculable
heuristic that will estimate how promising it is for a pair of states that the induced merger is
chosen by the argmax operation.

Applying several assumptions, we now create our heuristic from Equation (6.7). Consider
two distinct states 𝑞1 and 𝑞2, and a merger 𝜋 such that 𝜋(𝑞1) = 𝜋(𝑞2) and 𝜋(𝑞) = 𝑞 for
𝑞 ∉ {𝑞1, 𝑞2}. Assume that the application of 𝜋 leads to a bottom-up deterministic wta, hence,
Equation (6.7) is directly applicable. Also assume that the first two fractions of Equation (6.7)
equal 1. In other words, we only consider the last fraction in Equation (6.7). By using Observa-
tion 6.2.4, we can rewrite the denominator of this fraction. The result defines our heuristic ℎ𝑐

ℳ:

ℎ𝑐
ℳ(𝑞1, 𝑞2) =

𝑐Qℳ(𝑞1)𝑐Q
ℳ(𝑞1) ⋅ 𝑐Qℳ(𝑞2)𝑐Q

ℳ(𝑞2)

(𝑐Qℳ(𝑞1) + 𝑐Qℳ(𝑞2))𝑐Q
ℳ(𝑞1)+𝑐Q

ℳ(𝑞2)
.
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𝐴 ↦ 3
𝐵 ↦ 4
𝐶 ↦ 6
𝐷 ↦ 9

⋮

states ordered
by counts 𝑐Qℳ

create
state pairs

state pairs4 ordered
by heuristic ℎ𝑐

ℳ

{𝐴, 𝐵} ↦ 0.8
{𝐴, 𝐶} ↦ 0.6
{𝐵, 𝐶} ↦ 0.5
{𝐴, 𝐷} ↦ 0.3
{𝐵, 𝐷} ↦ 0.2

⋮
considered pairs
for beam width 3

create and
saturate
mergers

mergers mapped to
the result of Equation (6.7)

mrg 𝐴, 𝐵, 𝐸 ↦ 0.3
mrg 𝐴, 𝐶 ↦ 0.5
mrg 𝐵, 𝐶, 𝐷, 𝐹 ↦ 0.1

applied merger

Figure 6.2.: Usage of the heuristic to find the merger that shall be applied. For better readability
we used upper case letters to name states.

The special form of this definition gives rise to the following lemma.

Lemma 6.3.7. For positive arguments, the following function is strictly monotonically decreasing:

𝑓(𝑥, 𝑦) = 𝑥𝑥 · 𝑦𝑦

(𝑥 + 𝑦)𝑥+𝑦 .

In other words, the lemma means that 𝑓(𝑥1, 𝑦1) > 𝑓(𝑥2, 𝑦2) for every 0 < 𝑥1 ≤ 𝑥2 and
0 < 𝑦1 ≤ 𝑦2 with 𝑥1 < 𝑥2 or 𝑦1 < 𝑦2.
Putting the definitions of ℎ𝑐

ℳ and 𝑓 together, we have:

ℎ𝑐
ℳ(𝑞1, 𝑞2) = 𝑓(𝑐Qℳ(𝑞1), 𝑐Qℳ(𝑞2))

So, according to the heuristic and by Lemma 6.3.7, it is best to merge states with the least
counts w.r.t. 𝑐Q𝐺. Since the heuristic is only a rough approximation of Equation (6.7), we cannot
just take the state pair4, page 95 with the largest heuristic value and apply the saturated merger
(cf. saturate in cbsm, Algorithm 6.1). Instead we choose 𝑛 ∈ ℕ and consider only those 𝑛
state pairs that have the largest heuristic value. We hope that the best merger results from one
of these state pairs if 𝑛 is large enough. In the following we call 𝑛 the beam width.5 In this
way we can adapt the function mergecandidates such that it only returns a limited number of
mergers. The beamwidth can be added as another parameter of the algorithm. In the following
we will use the phrase “the mergers that lie in the beam” to refer to those mergers that are
returned from this adapted function mergecandidates.
The heuristic as we have defined it makes it especially cheap to determine the mergers that

lie in the beam: By the monotonicity of 𝑓 (cf. Section 6.3.1 and Lemma 6.3.7), we only need
to consider the states with the lowest counts to find the state pairs with the largest heuristic
values. Figure 6.2 summarizes how the heuristic is used to find the merger that is eventually
applied in an iteration.

5 | Note that, despite the name “beam width” we do not perform a beam search because we do not backtrack.

proven on page 181
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Ad-Hoc Reductions of the Number of Considered Mergers To restrict the number of
considered mergers even more, it may be useful to forbid some kinds of mergers. We call this a
merge restriction. It is important that a merge restriction is preserved by the function saturate
in cbsm (Algorithm 6.1), i.e., if a merger 𝜋 for a wta ℳ is allowed by a merge restriction, then
also π≡ where (≡) = saturate(ℳ, ker𝜋) must be allowed.

A merge restriction that we will use in some of our experiments forbids to merge states with
different root symbols. Recall that by the definition of the canonical wta the states are initially
trees, so this makes sense in the first iteration of cbsm. The resulting states of a merge are in
general not single trees anymore, but by following the merge restriction we can still virtually
assign a unique root label to those states, namely the same root label the states had before
merging. With this view the merge restriction also makes sense in the later iterations. Note
that this merge restriction is actually preserved by saturate.

Normalization: Giving Large Mergers a Boost Let 𝑄 be a set of states and 𝜋 be a merger
with dom(𝜋) = 𝑄. The size of 𝜋 is defined by |𝜋| = ∑𝐴∈𝑄/(ker𝜋)(|𝐴|−1). Note that 𝜋 is trivial
iff |𝜋| = 0. If |𝜋| = 1, then there is exactly one state pair4 {𝑞1, 𝑞2} such that 𝜋(𝑞1) = 𝜋(𝑞2).
Intuitively, |𝜋| is the number of mergers of size 1 that are needed if we want to express 𝜋 as a
composition of such mergers.

Revisiting line 11 of cbsm (Algorithm 6.1), larger mergers tend to induce a smaller likelihood
L(𝑐 ∣ mle𝑐(𝜋(ℳ))) than smaller mergers. The saturation of a merger 𝜋1 might increase its size
much more than the saturation of another merger 𝜋2. Since cbsm enforces saturation, this can
be seen as a disadvantage for 𝜋1 versus 𝜋2. To mitigate this disadvantage, one can include the
size of a merger in its evaluation as follows.

Recall the search in line 11 of cbsm (Algorithm 6.1):

argmax
𝜋∈𝛱

L(𝑐 ∣ mle𝑐(𝜋(ℳ))).

Also recall that it is equivalent to just consider the change in likelihood:

= argmax
𝜋∈𝛱

L(𝑐 ∣ mle𝑐(𝜋(ℳ)))
L(𝑐 ∣ mle𝑐(ℳ))

.

Instead of considering the pure change in likelihood, one could compensate the disadvantage
of larger mergers using their size:

argmax
𝜋∈𝛱

|𝜋|√L(𝑐 ∣ mle𝑐(𝜋(ℳ)))
L(𝑐 ∣ mle𝑐(ℳ))

.

We call this idea normalization. Intuitively, if 𝛿 is the change in likelihood induced by a merger
𝜋, then |𝜋|

√
𝛿 can be interpreted as the average change in likelihood induced by one of |𝜋| merg-

ers of size 1 whose composition is equal to 𝜋.

6.4. Implementation of Count-Based State Merging

In order to analyze the practical performance of cbsm (Algorithm 6.1) including the adjustments
from Section 6.3.1, we implemented a prototype in the programming language Haskell. The
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implementation is part of the project Vanda, which is a collection of tools and libraries for
natural language processing and experiments with formal languages written in Haskell.6 The
tools are aggregated in a single command line programwith a versatile command line interface
to access the different functionalities.
Our implementation is mainly done in the Haskell modules with prefix Vanda.CBSM. The

related command line tools can be listed by executing Vanda cbsm help. Algorithm 6.1 (cbsm)
is implemented in the Haskell module Vanda.CBSM.CountBasedStateMerging and can be
executed via the command Vanda cbsm cbsm, which accepts various command line arguments
to control the algorithm. The command Vanda cbsm cbsm help lists all possible command line
arguments with a short help text; we will briefly describe some of them below.
The implementation of cbsm (Algorithm 6.1) can read an arbitrary number of corpus files

passed via the command line. If no corpus file is explicitly passed, then the program reads
the corpus from the standard input. A corpus file can also be a directory; in that case the
program recursively reads all files in that directory. If several corpus files are read, then they
are just concatenated and treated as a single corpus. A corpus file contains an arbitrary number
of corpus entries, optionally separated by white space or newline. A corpus entry is a tree
represented by an S-expression. Given a possibly infinite set of atoms, an S-expression (symbolic
expression) is either an atom or a list of S-expressions enclosed in parentheses, i.e., (𝑠1 … 𝑠𝑘)
where 𝑠1, …, 𝑠𝑘 are S-expressions, 𝑘 ∈ ℕ.7 The S-expression for a tree is recursively defined
by

𝑠(𝜎(𝑡1, …, 𝑡𝑘)) = {
𝜎 if 𝑘 = 0,
(𝜎 𝑠(𝑡1) … 𝑠(𝑡𝑘)) if 𝑘 ≥ 1.

Hence, e.g., the tree 𝜎(𝛾(𝛼), 𝛽) is represented by the S-expression (𝜎 (𝛾 𝛼) 𝛽). In the imple-
mentation, a space in an S-expression can be any white space including newline.
We now detail some command line options that are important for the experiments in the

following sections. A command line option is a command line argument that begins with two
dashes (--). Some command line options require a value, which is just appended to the option,
separated by an equal sign (=). Alternatively, the value can also be passed as an additional
command line argument which directly follows the command line option (without =). If a
command line option does not expect a value, we also call it command line flag or just flag for
short. Many of the command line options refer to the adjustments to cbsm (Algorithm 6.1) we
introduced in Section 6.3.1.

• --heuristic: We implemented two different heuristics. For our experiments, we only
use the heuristic described in Section 6.3.1. Since this is not the default heuristic, you
have to explicitly choose it via command line option --heuristic=pld.
The default heuristic --heuristic=cs is defined as −(𝑐Qℳ(𝑞1) + 𝑐Qℳ(𝑞2)) for two states
𝑞1 and 𝑞2.

6 | Note that the name Vanda is ambiguous. Here we are talking about the Haskell project, which you can find on
GitHub under the name vanda-haskell: https://github.com/tud-fop/vanda-haskell.
There is another project called Vanda Studio, which provides a graphical front-end for designing complex ex-
periments based on existing tools using special graphs called workflows. Vanda Studio does not play a role for
our implementation and experiments.

7 | S-expressions were originally introduced by McCarthy [McC60]. Note that, in contrast to our definition, he
used pairs instead of lists. To represent lists, he used specially nested pairs terminated by a special atom.
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• --beam-width: This command line options expects an integer value and sets the beam
width to that value. Recall that the beam width determines how many of the best state
pairs according to the heuristic are used for building the mergers, from which the even-
tually applied merger is chosen. By setting the beam width to a value larger than the
number of available state pairs, the heuristic is effectively disabled because then all state
pairs are used.

• --restrict-merge: This command line option allows to enforce different merge re-
strictions. In our experiments, we will only use --restrict-merge=terminals, which
enables the merge restriction we described in Section 6.3.1.

• --normalize: Provide this command line flag to enable normalization.
There are some additional options to deal with special corpus formats and to preprocess the
trees in the corpus before passing it to cbsm (Algorithm 6.1). Some of the options can only
be fully understood after reading later sections. Nevertheless we already list them here to
give a full overview over all relevant options at a single place. For further details concerning
options dealing with the Penn Treebank, we refer to Section 6.6, and for options dealing with
binarization, we refer to Section 6.6 and Chapter 7.

• --as-forests: Provide this flag if there are additional parentheses “(…)” around each
corpus entry. This is for example the case in the Penn Treebank.

• --weighted-corpus: Provide this flag if every tree in the corpus has an attached count.
It is then assumed that every corpus entry has the form (count tree) where tree is the
tree in the usual format.

• --penn-filter: Provide this flag to remove all predicate argument structure annota-
tions from trees in the format of the Penn Treebank.

• --defoliate: Provide this flag to remove the leaf nodes from each corpus tree that
consists of more than the root node.

• --binarization: Use this command line option to select a binarization that shall be ap-
plied to every tree in the corpus. We will only use --binarization=leftbranching1
in our experiments.

6.5. Experiments with Artificial Automata and Corpora

In this section wewill investigate several probabilistic, bottom-up deterministicℙ-wtas that are
artificial, i.e., not based on natural language. We will use such a wta ℳ to create an artificial
corpus 𝑐. The corpus 𝑐 is given as input to our algorithm. We will then check if the original
wta ℳ (or an isomorphic variant) is found by the algorithm.

We now detail the creation of the corpus 𝑐. The first idea that comes to mind might be the
following: We interpret the root weights and the transition weights of ℳ as probabilities. This
is reasonable because ℳ is probabilistic. We can now randomly generate a tree as follows: We
start by randomly choosing a root state. Then we replace this state by the right-hand side of a
randomly chosen transition with this state on the left-hand side. If there are still states in the
result, then we do the same with these states, and repeat this process until no states are left.8
All random choices are done according to probability distributions given by the weights of ℳ.

8 | Note that this resembles the derivation process of an equivalent (weighted) regular tree grammar.
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Note that a tree 𝑡 is generated with the probability ⟦ℳ⟧(𝑡) because there is at most one non-
zero weighted run of ℳ on 𝑡 since ℳ is bottom-up deterministic. We can randomly generate
several trees in this way and use the frequencies of the generated trees for the corpus 𝑐.
It turns out that even for a small wta ℳ it can be rather expensive to create a representative

corpus 𝑐 in that way; by representative we mean that for every two trees 𝑡1, 𝑡2 ∈ supp(𝑐) we
have that 𝑐(𝑡1)/𝑐(𝑡2) is similar to ⟦ℳ⟧(𝑡1)/⟦ℳ⟧(𝑡2).

Example 6.5.1. Consider the wta chains-2 on page 102. With 𝑝 = 0.9 the wta assigns the
following weights among others:

𝛾(𝛼) ↦ 0.9 𝛾(𝛾(𝛾(𝛼))) ↦ 0.09 𝛾(𝛾(𝛾(𝛾(𝛾(𝛼))))) ↦ 0.009.

In a representative corpus, the first of those trees would have a frequency that is roughly
100 times as large as the frequency of the third tree. Hence, at least about 100 trees have
to be randomly generated to represent this proportion.

In order to avoid this expensive generation, we use the following approach instead. We
choose a number 𝑘 ∈ ℕ and only consider the 𝑘 best trees according to ℳ, i.e., those 𝑘 trees
that have the largest weight assigned by ℳ. We then let the corpus 𝑐 assign counts to the
𝑘 best trees such that the counts are approximately proportional to the trees’ weight. Every
other tree is assigned count 0. Formally: Let 𝑡1, …, 𝑡𝑘 be the 𝑘 best trees according to ℳ such
that ⟦ℳ⟧(𝑡𝑖) ≥ ⟦ℳ⟧(𝑡𝑖+1) for every 𝑖 ∈ [𝑘 − 1]. Then we define the corpus 𝑐 by

𝑐(𝑡) =
⎧{
⎨{⎩

round(⟦ℳ⟧(𝑡)
⟦ℳ⟧(𝑡𝑘)

) if 𝑡 ∈ {𝑡1, …, 𝑡𝑘},

0 otherwise,

where round(𝑥) = ⌊𝑥 + 0.5⌋ for every 𝑥 ∈ ℝ. Note that this definition implies that the lowest
non-zero count in 𝑐 is 1.

Experimental Setup In Section 6.5.1 we list several wtas, which we use for our experiments.
Note that some of them are parameterized by a parameter 𝑝. Figure 6.3 visualizes the experi-
mental steps for dealing with one of these wtas. The first step of an experiment is to generate a
concrete wta ℳ by choosing one of the wtas and setting the parameter 𝑝 (if the wta is parame-
terized). This wta is passed to the command line tool Tiburon9 [MK06]. By using the command
line option --kbest 𝑘, Tiburon generates the 𝑘 best trees according to ℳ, where 𝑘 is another
parameter of the experiment.10 In the next step, the probabilities of the trees are scaled and

9 | Tiburon can be downloaded from its website https://www.isi.edu/licensed-sw/tiburon/. The source code is
available on GitHub https://github.com/isi-nlp/tiburon. In fact, we adapted Tiburon to allow the output of
weights without rounding (command line flag --precise-output). This adapted version is also available on
GitHub https://github.com/Flupp/tiburon. Note that there is also a pull request for this change https://github.
com/isi-nlp/tiburon/pull/2.

10 | Actually, instead of a wta, Tiburon expects a weighted regular tree grammar (wrtg) as input. This is not a
problem because a wta can easily be converted to an equivalent wrtg. Also, Tiburon does not really return
the best trees, but the trees resulting from the best derivations of the wrtg (therefore repetitions are possible)
together with the weight of the derivations. Fortunately, this is not a problem either: Since our wtas are bottom
up deterministic, the corresponding wrtg has at most one derivation for a tree. Therefore, in our case Tiburon
does indeed return the best trees.
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parameters 𝑘

generate wta wta Tiburon 𝑘 best trees
with probabilities

probabilities
to counts

corpus

comparison sequence of wtas Vanda cbsm

iteration
or “—”

parameters

Figure 6.3.: Experimental setup for experiments with artificial wtas. Data is depicted by
rounded boxes, functions are depicted by angular boxes.

rounded as explained in the previous paragraph to create a corpus. This corpus is given to the
implementation of cbsm (Algorithm 6.1) in Vanda,11 including some command line options:
We choose a beam width that exceeds the number of available state pairs to effectively ignore
the heuristic, and in some experiments we enable normalization. For the resulting sequence
of wtas ℳ0, ℳ1, …, ℳ𝑛, we then manually compare each wta from the sequence with ℳ. In
detail, we check if there is an 𝑖 ∈ {0, …, 𝑛} such that crisp(ℳ𝑖) is isomorphic to crisp(ℳ).
If that is the case, then we return 𝑖, otherwise we return “—”. Note that 𝑖 coincides with the
iteration of cbsm (Algorithm 6.1) that yielded ℳ𝑖.

6.5.1. The Artificial Automata

In this section we list the various bottom-up deterministic ℙ-wtaswe used for our experiments.
The wta chains-2. This wta deals with trees over the alphabet {𝛾(1), 𝛼(0)} and assigns non-
zeroweights to trees that are of the form 𝛾(𝛾(…(𝛼)…)) and have an even height. The parameter
𝑝 determines the probability of the 𝛼 transition.

1⟶ 𝑞0 𝑞0
1⟶ 𝛾(𝑞1) 𝑞1

1−𝑝⟶ 𝛾(𝑞0)

𝑞1
𝑝⟶ 𝛼

The wta chains-6. This wta deals with trees over the alphabet {𝛾(1), 𝛼(0)} and assigns non-
zero weights to trees that are of the form 𝛾(𝛾(…(𝛼)…)) and have a height that is divisible by 6.
The parameter 𝑝 determines the probability of the 𝛼 transition.

1⟶ 𝑞0 𝑞0
1⟶ 𝛾(𝑞5) 𝑞3

1⟶ 𝛾(𝑞2) 𝑞1
1−𝑝⟶ 𝛾(𝑞0)

𝑞5
1⟶ 𝛾(𝑞4) 𝑞2

1⟶ 𝛾(𝑞1) 𝑞1
𝑝⟶ 𝛼

𝑞4
1⟶ 𝛾(𝑞3)

11 | The version of Vanda we used for these experiments is from 2017-02-21 12:40. The Git commit of this version
is 718e201fc07f74049918c0cf4139ed901c2edb36.
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The wta chains-2-or-3.This wta deals with trees over the alphabet {𝛾(1), 𝛼(0)} and assigns
non-zero weights to trees that are of the form 𝛾(𝛾(…(𝛼)…)) and have a height that is divisible
by 2 or 3. The parameter 𝑝 determines the probability of the𝛼 transition. The transitionweights
are identical to those of the wta chains-6; therefore we only list the non-zero root weights.

1/4⟶ 𝑞0
1/4⟶ 𝑞4

1/4⟶ 𝑞3
1/4⟶ 𝑞2

The wta chains-2-or-3-or-5.This wta deals with trees over the alphabet {𝛾(1), 𝛼(0)} and as-
signs non-zero weights to trees that are of the form 𝛾(𝛾(…(𝛼)…)) and have a height that is
divisible by 2, 3 or 5. The parameter 𝑝 determines the probability of the 𝛼 transition. Since this
wta requires 30 states, we omit its concrete definition. The wta is defined analogously to the
wta chains-2-or-3.
The wta chains-2-and-3.This wta deals with trees over the alphabet {𝜎(2), 𝛾(1), 𝛼(0)} and
assigns non-zero weights to trees that are of the form 𝜎(𝛾(…(𝛼)…), 𝛾(…(𝛼)…)) where the
left subtree has an even height and the right subtree has a height that is divisible by 3. The
parameter 𝑝 determines the probability of the 𝛼 transition.

𝜎

𝛾

𝛾

𝛾

𝛼

𝛾

𝛾

𝛼di
v.
by

2

di
v.
by

3

1⟶ 𝑞𝑠 𝑞𝑠
1/6⟶ 𝜎(𝑞0, 𝑞0) 𝑞0

1⟶ 𝛾(𝑞5) 𝑞1
1−𝑝⟶ 𝛾(𝑞0)

𝑞𝑠
1/6⟶ 𝜎(𝑞0, 𝑞3) 𝑞5

1⟶ 𝛾(𝑞4) 𝑞1
𝑝⟶ 𝛼

𝑞𝑠
1/6⟶ 𝜎(𝑞4, 𝑞0) 𝑞4

1⟶ 𝛾(𝑞3)

𝑞𝑠
1/6⟶ 𝜎(𝑞4, 𝑞3) 𝑞3

1⟶ 𝛾(𝑞2)

𝑞𝑠
1/6⟶ 𝜎(𝑞2, 𝑞0) 𝑞2

1⟶ 𝛾(𝑞1)

𝑞𝑠
1/6⟶ 𝜎(𝑞2, 𝑞3)

Thewta pathlengths-210-2.This wta deals with trees over the alphabet {𝜎(2), 𝛾(1), 𝛼(0)} and
assigns non-zero weights to trees where every path has an even length. The parameter 𝑝 de-
termines the probability of the 𝛼 transition. It works analogously to the wta chains-2.

1⟶ 𝑞0 𝑞0
1/2⟶ 𝜎(𝑞1, 𝑞1) 𝑞1

1−𝑝
2⟶ 𝜎(𝑞0, 𝑞0)

𝑞0
1/2⟶ 𝛾(𝑞1) 𝑞1

1−𝑝
2⟶ 𝛾(𝑞0)

𝑞1
𝑝⟶ 𝛼

One might wonder – to really make pathlengths-210-2 analogous wta to chains-2 – why we
did not define it as a wta over {𝜎(2), 𝛾(1), 𝛼(0)} that assigns non-zero weights to trees of an
even height. It turns out that the language of trees of even height over this alphabet is not
recognizable because a wta would have to track the exact height of subtrees to decide if the
height of the whole tree is even, which is not possible with a finite number of states.
Thewta pathlengths-210-6.This wta deals with trees over the alphabet {𝜎(2), 𝛾(1), 𝛼(0)} and
assigns non-zero weights to trees where every path has a length that is divisible by 6. The
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parameter 𝑝 determines the probability of the 𝛼 transition. It works analogously to the wta
chains-6. For the definition we let 𝑝𝜎 = 0.2 ⋅ (1 − 𝑝) and 𝑝𝛾 = 0.8 ⋅ (1 − 𝑝).

1⟶ 𝑞0 𝑞0
0.2⟶ 𝜎(𝑞5, 𝑞5) 𝑞0

0.8⟶ 𝛾(𝑞5) 𝑞1
𝑝𝜎⟶ 𝜎(𝑞0)

𝑞5
0.2⟶ 𝜎(𝑞4, 𝑞4) 𝑞5

0.8⟶ 𝛾(𝑞4) 𝑞1
𝑝𝛾⟶ 𝛾(𝑞0)

𝑞4
0.2⟶ 𝜎(𝑞3, 𝑞3) 𝑞4

0.8⟶ 𝛾(𝑞3) 𝑞1
𝑝⟶ 𝛼

𝑞3
0.2⟶ 𝜎(𝑞2, 𝑞2) 𝑞3

0.8⟶ 𝛾(𝑞2)

𝑞2
0.2⟶ 𝜎(𝑞1, 𝑞1) 𝑞2

0.8⟶ 𝛾(𝑞1)

The wta pathlength-leftmost-20-2.This wta deals with trees over the alphabet {𝜎(2), 𝛼(0)}
and assigns non-zero weights to trees where the leftmost path has an even length. The param-
eter 𝑝 determines the probability of the 𝛼 transition.

1⟶ 𝑞0 𝑞0
1/2⟶ 𝜎(𝑞1, 𝑞0) 𝑞1

1−𝑝
2⟶ 𝜎(𝑞0, 𝑞0)

𝑞0
1/2⟶ 𝜎(𝑞1, 𝑞1) 𝑞1

1−𝑝
2⟶ 𝜎(𝑞0, 𝑞1)

𝑞1
𝑝⟶ 𝛼

The wta pathlength-leftmost-20-4.This wta deals with trees over the alphabet {𝜎(2), 𝛼(0)}
and assigns non-zero weights to trees where the leftmost path has a length that is divisible by
4. The parameter 𝑝 determines the probability of the 𝛼 transition.

1⟶ 𝑞0 𝑞0
1/4⟶ 𝜎(𝑞3, 𝑞0) 𝑞3

1/4⟶ 𝜎(𝑞2, 𝑞0) 𝑞2
1/4⟶ 𝜎(𝑞1, 𝑞0) 𝑞1

1−𝑝
4⟶ 𝜎(𝑞0, 𝑞0)

𝑞0
1/4⟶ 𝜎(𝑞3, 𝑞1) 𝑞3

1/4⟶ 𝜎(𝑞2, 𝑞1) 𝑞2
1/4⟶ 𝜎(𝑞1, 𝑞1) 𝑞1

1−𝑝
4⟶ 𝜎(𝑞0, 𝑞1)

𝑞0
1/4⟶ 𝜎(𝑞3, 𝑞2) 𝑞3

1/4⟶ 𝜎(𝑞2, 𝑞2) 𝑞2
1/4⟶ 𝜎(𝑞1, 𝑞2) 𝑞1

1−𝑝
4⟶ 𝜎(𝑞0, 𝑞2)

𝑞0
1/4⟶ 𝜎(𝑞3, 𝑞3) 𝑞3

1/4⟶ 𝜎(𝑞2, 𝑞3) 𝑞2
1/4⟶ 𝜎(𝑞1, 𝑞3) 𝑞1

1−𝑝
4⟶ 𝜎(𝑞0, 𝑞3)

𝑞1
𝑝⟶ 𝛼

The wta zig-zag-200-2.This wta deals with trees over the alphabet {𝜎(2), 𝛼(0), 𝛽(0)} and as-
signs non-zero weights to trees that contain a zig-zag pattern of 𝜎 nodes as sketched in Fig-
ure 6.4, i.e., trees that have a position of the form 2121…2 or 2121…21 that is labeled by 𝛼.
Since bottom-up determinism makes this wta rather complicated, we first show another wta
that is not bottom-up deterministic, but accepts the same (unweighted) language.

⟶ 𝑞𝑙 𝑞𝑙 ⟶ 𝜎(𝑞𝑥, 𝑞𝑟) 𝑞𝑟 ⟶ 𝜎(𝑞𝑙, 𝑞𝑥) 𝑞𝑥 ⟶ 𝜎(𝑞𝑥, 𝑞𝑥)

𝑞𝑙 ⟶ 𝛼 𝑞𝑟 ⟶ 𝛼 𝑞𝑥 ⟶ 𝛼

𝑞𝑥 ⟶ 𝛽
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𝜎
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𝛼

Figure 6.4.: Sketch of a tree that is assigned a non-zero weight by the wta zig-zag-200-2.
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Figure 6.5.: Sketches of trees where the wta zig-zag-200-2 has a non-zero weighted run that
has the respectively given state at its root. Note that in general the left and right
subtrees do not have to be of the same height.

The actual wta zig-zag-200-2 is defined as follows; note that it is bottom-up deterministic and
that it accepts the same language of trees as the previously shownwta if we ignore the weights.

1/2⟶ 𝑞l-
1/2⟶ 𝑞lr

𝑞lr
12/16⟶ 𝛼 𝑞--

12/16⟶ 𝛽

𝑞lr
1/16⟶ 𝜎(𝑞l-, 𝑞-r) 𝑞l-

2/16⟶ 𝜎(𝑞--, 𝑞-r) 𝑞-r
2/16⟶ 𝜎(𝑞l-, 𝑞--) 𝑞--

1/16⟶ 𝜎(𝑞--, 𝑞--)

𝑞lr
1/16⟶ 𝜎(𝑞lr, 𝑞-r) 𝑞l-

1/16⟶ 𝜎(𝑞-r, 𝑞-r) 𝑞-r
11/16⟶ 𝜎(𝑞lr, 𝑞--) 𝑞--

1/16⟶ 𝜎(𝑞-r, 𝑞--)

𝑞lr
1/16⟶ 𝜎(𝑞l-, 𝑞lr) 𝑞l-

11/16⟶ 𝜎(𝑞--, 𝑞lr) 𝑞-r
1/16⟶ 𝜎(𝑞l-, 𝑞l-) 𝑞--

1/16⟶ 𝜎(𝑞--, 𝑞l-)

𝑞lr
1/16⟶ 𝜎(𝑞lr, 𝑞lr) 𝑞l-

2/16⟶ 𝜎(𝑞-r, 𝑞lr) 𝑞-r
2/16⟶ 𝜎(𝑞lr, 𝑞l-) 𝑞--

1/16⟶ 𝜎(𝑞-r, 𝑞l-)

Figure 6.5 visualizes the intuition of the states. The weights of the transitions may seem a bit
unbalanced, but this is necessary to get a consistent wta.
The wta zig-zag-pathlength-200-2. This wta uses the alphabet {𝜎(2), 𝛼(0), 𝛽(0)} and assigns
non-zero weights to trees that contain a zig-zag pattern of even length (cf. Figure 6.4), i.e., trees
that have a position of the form 2121…21 that is labeled by 𝛼 or 𝛽. This wta is very similar to
the wta zig-zag-200-2; only the leaf transitions and the weights of the other non-zero weighted
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transitions are different.
1/2⟶ 𝑞lr

1/2⟶ 𝑞l- 𝑞-r
18/40⟶ 𝛼

𝑞-r
18/40⟶ 𝛽

𝑞lr
25/40⟶ 𝜎(𝑞l-, 𝑞-r) 𝑞l-

2/40⟶ 𝜎(𝑞--, 𝑞-r) 𝑞-r
1/40⟶ 𝜎(𝑞l-, 𝑞--) 𝑞--

4/40⟶ 𝜎(𝑞--, 𝑞--)

𝑞lr
7/40⟶ 𝜎(𝑞lr, 𝑞-r) 𝑞l-

34/40⟶ 𝜎(𝑞-r, 𝑞-r) 𝑞-r
1/40⟶ 𝜎(𝑞lr, 𝑞--) 𝑞--

7/40⟶ 𝜎(𝑞-r, 𝑞--)

𝑞lr
4/40⟶ 𝜎(𝑞l-, 𝑞lr) 𝑞l-

2/40⟶ 𝜎(𝑞--, 𝑞lr) 𝑞-r
1/40⟶ 𝜎(𝑞l-, 𝑞l-) 𝑞--

4/40⟶ 𝜎(𝑞--, 𝑞l-)

𝑞lr
4/40⟶ 𝜎(𝑞lr, 𝑞lr) 𝑞l-

2/40⟶ 𝜎(𝑞-r, 𝑞lr) 𝑞-r
1/40⟶ 𝜎(𝑞lr, 𝑞l-) 𝑞--

25/40⟶ 𝜎(𝑞-r, 𝑞l-)

6.5.2. Results

In this section we present the results of our experiments for the artificial wtas. The detailed
experimental setup was presented on page 101.

Investigated Properties Tables 6.1 and 6.2 show the results of our experiments. The 𝑝 col-
umn lists the used values for the parameter 𝑝, which determines the weights of the wta, or “—”
if the wta has no parameter. The 𝑘 column gives the number of different trees in the corpus;
recall that the corpus focuses on the 𝑘 best trees of the respective wta. The last columns give
the results of the experimental runs. Each row contains the statistics of one run with deacti-
vated --normalize flag (“no” column) and one run where this flag is activated (“yes” column).
An entry has the form “𝑖/𝑛”, “𝑖/𝑛 (𝑚)”, or “—/𝑛” where 𝑖, 𝑛, and 𝑚 are integers. The integer
𝑛 is the total number of iterations of the algorithm. Let ℳ be the wta determined by the first
two columns of the respective row, and let ℳ𝑖 be the wta returned in the 𝑖-th iteration of the
cbsm algorithm in the respective experimental run.

• If the entry has the form “𝑖/𝑛”, then crisp(ℳ𝑖) and crisp(ℳ) are isomorphic. We say
that ℳ was (fully) recovered

• If the entry has the form “𝑖/𝑛 (𝑚)”, then crisp(ℳ𝑖) is a sub-wta of crisp(ℳ) up to iso-
morphism, and ℳ has 𝑚 more non-zero weighted transitions than ℳ𝑖. We say that ℳ
was partially recovered. Intuitively ℳ𝑖 lacks 𝑚 non-zero weighted transitions to make
it a full recovery.

• If the entry has the form “—/𝑛”, then ℳ was neither fully nor partially recovered.
For some wtas, the lowest used 𝑝 value is rather high (e.g., 0.89 for the wta pathlength-

leftmost-20-4). This is necessary to get consistent wtas. The numbers for 𝑘 might seem specif-
ically chosen (e.g., we often used 𝑘 = 26 instead of nice round numbers like 20 or 30), but if
not stated otherwise there is no specific reason for the choices. In some cases, to avoid numer-
ical problems, we limited 𝑘 such that the ratio of the weight of the best tree and the 𝑘-best tree
is not too large. This applies to chains-2, chains-6, and chains-2-or-3 where the maximal used
value for 𝑘 gets smaller with greater values for 𝑝. Only for pathlength-leftmost-20-4 the values
405 and 1302 for 𝑘 were chosen intentionally, which we will explain later.

Discussion The tables show that the algorithm successfully recovered the original wta in
many cases. The results suggest to activate the --normalize flag because, if the wta was
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recovered without normalization, then it was also recovered with normalization, while the
reverse implication does not hold. Presumably, normalization helps to prevent that the al-
gorithm chooses mergers that turn out to be bad in the long run. This is important because
the algorithm works greedily (cf. Assumption 6.3.3) and therefore cannot recover from a bad
merge decision from a previous iteration.
Also, most table rows show that a run of the algorithm with activated --normalize flag

needs less iterations than a run without it. This is expected because normalization mitigates
the generally larger impact of larger merges on the likelihood. Surprisingly, there are some ex-
amples where a run with normalization needs more iterations than without normalization (e.g.
for pathlength-leftmost-20-4with 𝑝 ∈ {0.94, 0.95} and 𝑘 ∈ {405, 1302}). This can be explained
by the enforcement of bottom-up determinism because some merges in earlier iterations can
imply that only large merges are possible in a later iteration without breaking bottom-up de-
terminism.
Let us now look into some examples in more detail. The recovery of the wta in Table 6.1

succeeds for all tested instances if normalization was used and the corpus size is large enough.
The wtas in this table have in common that they mostly deal with monadic trees. Only wta
chains-2-and-3 is a slight exception: With this wta the non-zero weighted trees have a non-
monadic root node, but the rest is still monadic.
In contrast to that, the wta in Table 6.2 cannot be recovered in all cases. All these wtas deal

with non-monadic trees. The algorithm succeeds for the wta pathlengths-210-2, pathlengths-
210-6, and pathlength-leftmost-20-2, but fails for the wta pathlength-leftmost-20-4, zig-zag-200-2,
and zig-zag-pathlength-200-2. The first two wtas check whether a given property holds for
every path of a tree. Conversely, the last four wtas check a property only for a specific path
in a tree while the subtrees offside this path are arbitrary. This might render the recovery of
one of the last four wtas especially difficult because “the algorithm can’t see the forest for the
trees”: The algorithm works by investigating the counts of the subtrees in the corpus. In the
corpus every tree has a path with the desired property, but offside that path there are often
many subtrees that do not represent that property.
Requiring a property only for a single path also seems to affect the quality of the corpus in

the sense that the relative counts in the corpus poorly resemble the probabilities assigned by
the wta. For example for the wta pathlength-leftmost-20-4 with 𝑝 = 0.89 and 𝑝 = 0.94, the
smallest 𝑘 such that the corpus contains a tree whose leftmost path has a length greater than 4
is 𝑘 = 405. Up to 𝑘 = 1272 the corpus does not contain another tree with this property. With
𝑘 = 1302 you find 7 more different trees with this property, but then again up to 𝑘 = 4074
you do not find any more trees with this property. This is the reason for choosing 𝑘 = 405
and 𝑘 = 1302 for our experiments. For 𝑝 = 0.95 the smallest 𝑘 for finding a tree with that
property is even 𝑘 = 1271; we did not reflect this in the experiments.
The relative frequencies of the leftmost path lengths in such a corpus do not represent the

probabilities as given by the respective original wta very well. For example with 𝑝 = 0.89
and 𝑘 = 1302 we have that more than 99.97% of the corpus12 consists of trees whose leftmost
paths have length 4. Conversely, considering the probability distribution given by the wta, the
probabilities of trees whose leftmost paths have length 4 sums up to only 0.89. Presumably,

12 | More formally that means 99.97% < (∑𝑡 such that leftmost path has length 4 𝑐(𝑡))/|𝑐|.
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normalization
wta 𝑝 𝑘 no yes

chains-2
2 states

𝛾

𝛾

𝛾

𝛼

di
v.
by

2

0.00001 26 25/ 26 1/ 2
330 329/330 1/ 2

0.1 26 25/ 26 1/ 2
203 116/117 1/ 2

0.5 26 25/ 26 1/ 2
31 14/ 15 1/ 2

0.9 10 7/ 8 1/ 2

chains-6
6 states

𝛾

𝛾

𝛾

𝛼

di
v.
by

6
0.00001 26 28/ 30 1/ 3

100 102/104 1/ 3

0.1 26 28/ 30 1/ 3
100 102/104 1/ 3

0.5 26 26/ 28 1/ 3
31 15/ 17 1/ 3

0.9 10 8/ 10 1/ 3
chains-2-or-3
6 states

𝛾

𝛾

𝛾

𝛼 di
v.
by

2
or

3

0.00001 26 —/ 39 —/ 5
330 —/495 2/ 4

0.1 26 —/ 39 2/ 4
330 —/495 1/ 3

0.5 26 —/ 39 1/ 3
124 —/184 1/ 3

0.9 26 24/ 26 1/ 3
40 26/ 28 1/ 3

chains-2-or-3-or-5
30 states

𝛾

𝛾

𝛾

𝛼 di
v.
by

2,
3,

or
5

0.00001 60 —/ 88 —/ 4
330 —/449 1/ 4

0.1 60 —/ 88 —/ 4
330 —/449 5/ 8

0.5 60 —/ 88 1/ 4
330 —/449 1/ 4

0.9 60 —/ 88 1/ 4
220 —/299 1/ 4

chains-2-and-3
7 states

𝜎

𝛾

𝛾

𝛾

𝛼

𝛾

𝛾

𝛼di
v.
by

2

di
v.
by

3

0.00001 26 34/ 37 27/ 30
330 —/389 333/336

0.1 26 34/ 37 27/ 30
330 —/389 332/335

0.5 26 34/ 37 27/ 30
330 369/372 331/334

0.9 26 33/ 36 27/ 30
330 362/365 330/333

Table 6.1.: Results of the experiments with artificial wtas for (mostly) monadic trees. The struc-
ture of the table is described in Section 6.5.2.
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normalization
wta 𝑝 𝑘 no yes

pathlengths-210-2
2 states

0.56 26 25/ 26 21/ 22
330 221/222 211/212

0.6 26 32/ 33 28/ 29
330 210/211 184/185

0.7 26 33/ 34 29/ 30
330 218/219 200/201

0.9 26 33/ 34 28/ 29
330 228/229 227/228

pathlengths-210-6
6 states

0.67 26 46/ 48 (1) 36/ 38 (1)
330 402/404 338/340

0.7 26 45/ 47 (1) 32/ 34 (1)
330 427/429 366/368

0.8 26 46/ 48 (1) 35/ 37 (1)
330 384/386 336/338

0.9 26 45/ 47 (1) 37/ 39 (1)
330 316/318 284/286

pathlength-leftmost-20-2
2 states

0.8 26 28/ 29 25/ 26
330 195/196 190/191

0.85 26 22/ 23 19/ 20
330 —/165 159/160

0.9 26 26/ 27 22/ 23
330 —/197 179/180

pathlength-leftmost-20-4
4 states

0.89 26 30/ 33 (6) 30/ 30 (6)
405 —/146 —/141
1302 —/350 —/269

0.94 26 35/ 38 (6) 33/ 35 (6)
405 —/157 —/198
1302 —/306 —/371

0.95 26 28/ 31 (6) 26/ 28 (6)
405 220/223 (4) 291/293 (4)
1302 —/835 —/967

zig-zag-200-2
4 states

— 26 —/ 32 —/ 29
330 —/282 —/270
512 —/248 —/246
1024 —/663 —/694

zig-zag-pathlength-200-2
4 states

— 26 —/ 19 —/ 16
330 —/215 —/211
512 —/268 —/287
1024 —/119 —/262

Table 6.2.: Results of the experiments with artificial wtas for non-monadic trees. The structure
of the table is described in Section 6.5.2.
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6. Count-Based State Merging

this small number of trees with a length of the leftmost path greater than 4 in the corpus makes
it hard for the algorithm to detect the regularity on that path. Further experiments are needed
to explore if the algorithm still fails if the relative frequencies of trees with different leftmost
path lengths is closer to the probability distribution given by the wta.

6.6. Experiments with the Penn Treebank

In this section we present our results of experiments with a fraction of the Penn Treebank. We
look at four runs of our algorithm with different parameters.

The Penn Treebank [MSM93] is a collection of English sentences together with their syntactic
structure. The sentences originate from different sources. One source is theWall Street Journal.
Some of its articles from the eighties contribute 49 208 sentences to the Penn Treebank. There
are other sources, which are partly equipped with additional information; however, we will not
consider sentences from these sources. The syntactic structure of a sentence consists of part-
of-speech information about the words of the sentence and information about how the words
of the sentence are put together to a hierarchy of sentence components to form the complete
sentence.

These information are available in different formats. We only consider the format that rep-
resents all the information for a sentence in a single tree. Such a tree has at least height 3. The
leaf nodes of the tree read from left to right make up the English sentence. Every parent node
of a leaf has only this leaf as a child and its label contains the part-of-speech tag (cf. Table 6.4)
of the English word at the leaf. The other nodes represent the hierarchical structure of the sen-
tence and their labels are called bracket labels (cf. Table 6.3).13 Some trees also contain predicate
argument structure annotations [Mar+94], which is structural information that cannot be rep-
resented by a tree. This information is represented by additional leaf nodes and by additional
information in some node labels.

In some experiments we will apply a binarization to the trees before running cbsm (Algo-
rithm 6.1). A binarization is an injective mapping from arbitrary trees to trees that exclusively
contain nodes with at most two children. The practical purpose of binarization is to give the
algorithm more possibilities to generalize the corpus. In Chapter 7 we take a closer look at the
purpose of binarizations in general and formal properties of some concrete binarizations.

Experimental Setup For our experiments we use theWall Street Journal data from the third
release of the Penn Treebank.14 In particular we use the zeroth section15 for training and the

13 | In natural language processing, labels of leaf nodes are sometimes called terminals and labels of inner nodes
are called non-terminals. The part-of-speech tags are occasionally called preterminals. We do not use these
terms with this meaning to avoid confusion with the definition of some of these terms in the context of formal
grammars and automata.

14 | Marcus, Mitchell, et al. Treebank-3 LDC99T42. Web Download. Philadelphia: Linguistic Data Consortium,
1999. https://catalog.ldc.upenn.edu/LDC99T42
Successor of:
Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz. Treebank-2 LDC95T7. Web Download.
Philadelphia: Linguistic Data Consortium, 1995. https://catalog.ldc.upenn.edu/LDC95T7

15 | treebank_3/parsed/mrg/wsj/00/wsj_00{01..99}.mrg
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6.6. Experiments with the Penn Treebank

parameters Vanda cbsm
Penn Treebank

section 0

sequence of wtas Vanda parse

Penn Trebank
complete

sequence
of trees

Vanda recognize-trees count states evalb

recognizable trees count number of states F-measure

sequence of
sentences

yield

Penn Treebank
section 23

for each wta

Figure 6.6.: Experimental setup for experiments with the Penn Treebank. Data is depicted by
rounded boxes, functions are depicted by angular boxes. Note that we preprocess
the Penn Treebank such that the trees’ leaves are part-of-speech tags. Therefore in
our experiments a sentence is a sequence of part-of-speech tags.

23rd section16 for testing. This amounts to 1 921 trees for training and 2 416 trees for testing.
Before using those trees, we preprocess them:

• we remove predicate argument structure annotations (by --penn-filter),
• we remove the leaves (by --defoliate) in order to get trees with part-of-speech tags
at the leaves, and

• in some experiments we binarize the trees (by --binarization=leftbranching1).
This binarization preserves the yield, i.e., if 𝑓 is the binarization, then for every tree 𝑡
we have yield(𝑡) = yield(𝑓(𝑡)).

For training we use a beam-width of 10 000 (by --beam-width=10000) and we restrict the
merges (by --restrict-merge=terminals) in order to only merge states that represent trees
with the same root terminal (cf. Section 6.3.1, page 98). We conducted four different trainings
by varying two parameters:

• disabling or enabling binarization (--binarization=leftbranching1), and
• disabling or enabling normalization (--normalize).

Figure 6.6 summarizes the steps for a single training including the calculation of the properties
that we introduce in the next paragraph. The version of Vanda we used for training is from
2017-05-17 15:15.17

Investigated Properties Recall that cbsm (Algorithm 6.1) yields a sequence of wtas. We will
compare these wtas on the basis of different properties. To quantify the linguistic quality of a
wta ℳ, we consider the following properties:

16 | treebank_3/parsed/mrg/wsj/23/wsj_23{00..99}.mrg
17 | The Git commit of this version is 970ec82a094d4f35cdad49b09d9e49341fb7040f.

111

https://github.com/tud-fop/vanda-haskell/commit/970ec82a094d4f35cdad49b09d9e49341fb7040f


6. Count-Based State Merging

• The number of (preprocessed) trees 𝑡 in the Penn Treebank that have a non-zero weight
⟦ℳ⟧(𝑡). We call this the recognizable tree count of ℳ.

• The parsing performance of ℳ in terms of the bracketing F-measure using our test cor-
pus. In detail that means, for every (preprocessed) tree 𝑡 from the test corpus, we first de-
termine its yield 𝑤 = yield(𝑡). Then we parse 𝑤 using ℳ, i.e., we determine a tree ̂𝑡 such
that yield( ̂𝑡) = 𝑤 and ⟦ℳ⟧( ̂𝑡) is maximal; in a formula: ̂𝑡 = argmax𝑡′ : yield(𝑡′)=𝑤⟦ℳ⟧(𝑡′).
Since this is done for every tree from the test corpus, we get another corpus consisting of
the parsing results. This corpus is compared with the test corpus using the tool evalb.18
The tool compares corresponding trees from the two corpora and calculates the bracket-
ing F-measure to evaluate the similarity between the two corpora.19 The F-measure is a
value between 0% and 100%, where a value of 100 %means that the corpora are identical.
If we evaluate wtas that were trained on binarized trees, then we undo the binarization
in the parsing results before comparing them to the (unbinarized) trees in the test corpus.
Note that nothing needs to be changed in the parsing itself because the used binarization
preserves the yield.

Furthermore we look at trivial properties like the number of states.
Figures 6.7 to 6.10 visualize those properties for the wtas generated in the four different

experiments. The x-axes show the iteration in which the respective wta was generated, the
y-axes show the values of the respectively indicated property. In each figure, we only show
the data for the last iterations of the algorithm; the concrete intervals are stated in the captions.

In the plots for the bracketing F-measure, if a data point has a red color, then many parse
errors occurred, i.e., many of the yields of the trees from the test corpus could not be parsed.
Since elements from the test corpus that lead to parse errors are completely ignored by evalb,
the values of these red data points are not very meaningful.

The horizontal gray lines in the plots highlight some special property values, which we
describe in the following. Note that, depending on the range of the y-axis, not every special
property value is included in every plot.

In the plots for the recognizable tree count, we highlighted the size of the training corpus
(1 921 trees) and the size of the Penn Treebank (49 208 trees) because these are the bounds for
the recognizable tree count in our experiments (every resulting wta assigns non-zero weights
to the trees from the training corpus).

In each plot for the bracketing F-measure, we highlighted the maximal value; the vertical
gray line indicates the corresponding iteration. In Figures 6.7 and 6.8 we additionally high-
lighted the value for the last iteration. These are the plots for the experiments without bina-
rization; note that in these experiments the wta resulting from the last iteration coincides with
the read-off wta (cf. Definition 4.3.1). This is due to the used merge restriction (--restrict-
merge=terminals).

Discussion of Investigated Properties The plots for the experiments without binarization
(Figures 6.7 and 6.8) clearly show that the wta with the best bracketing F-measure exceeds

18 | We use the version from November 3, 2013. Downloadable at:
http://nlp.cs.nyu.edu/evalb/ or https://github.com/Flupp/evalb.

19 | For details we refer to the README file of evalb.
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6.6. Experiments with the Penn Treebank

the bracketing F-measure of the trivially computable read-off wta (cf. Definition 4.3.1). We get
the best results with a wta from the experiment without binarization and with normalization
(71.06 %).
Interestingly the recognizable tree count still rises significantly after the maximum peak in

the bracketing F-measure. This is probably the case because for the recognizable tree count a
test tree is either accepted by the wta and therefore counted, or it is not accepted and therefore
not counted. However, the bracketing F-measure already rewards partial matches of a parsing
result and the respective test tree. While the mergers after the peak increase the recognizable
tree count even more, they presumably have the side effect of destroying the structures that
were favorable for the bracketing F-measure before.
The results for the experiments with binarization (Figures 6.9 and 6.10) are rather bad. Still,

the maximal bracketing F-measure is much better than the bracketing F-measure for the wta
resulting from the last iteration (i.e., the read-off wta). However, the maximal bracketing F-
measure is much lower than the bracketing F-measure for the read-off wta. Maybe this can be
improved by a more clever merge restriction that takes the binarization into account.
All four experiments (Figures 6.7 to 6.10) have in common that only the last iterations yield

wtas that do not cause significantly many parse errors with our test corpus (recall that the red
color of data points in the lower plots indicates a large number of parse errors). A similar be-
havior can be seen in plots for the recognizable tree count: Only with the wtas from the last
iterations a significant amount of trees from the Penn Treebank is accepted. These are the rea-
sons whywe limited our plots to the last iterations. We see two potential explanations for these
results: One reason could be overfitting to the training data, i.e., the wtas from earlier itera-
tions do not accept many trees besides those in the training corpus. For the other explanation,
note that the wtas in the last iterations do not have many more states than the read-off wta,
especially in the experiments without binarization (Figures 6.7 and 6.8). So maybe the wtas in
earlier iterations already generalize the corpus significantly, but these generalizations just do
not include the generalizations needed to deal with the test data.

Discussion of Linguistic Plausibility Let us now focus on the experiment without bina-
rization and with normalization (Figure 6.8). Figure 6.11 visualizes the merges in the last it-
erations of the algorithm; especially all merges occurring after the peak in the bracketing F-
measure are depicted. In this figure, each node of a tree represents a state. Nodes with labels
starting with 𝑞 represent unmerged states from the canonical wta. Each other node represents
a state that results from merging the states represented by the node’s children; if such a node
is depicted as a leaf, then we just omitted to draw the subtrees to keep the graphics succinct.
The number left of the hash “#” gives the iteration in which the merge was conducted. The

number right of the hash gives the count of the state with respect to the corpus (cf. 𝑐Qℳ for a wta
ℳ). Note that the count of a node is the sumof the counts of its subnodes (cf. Observation 6.2.4).
Recall that a state of the canonical automaton is a (sub)tree from the corpus. Our merge

restriction (--restrict-merge=terminals) allows us to separate states that have root label
NP – those are depicted in the upper tree – from those states that have root label VP – those
are depicted in the lower tree. Below the leaves, the states (which are trees) from the canonical
automaton that were merged to get the respective leaf are listed. In the lists, the root nodes
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Figure 6.7.: Experiment without binarization and without normalization.
Only the iterations from 15 239 to 15 371 are shown.
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Figure 6.8.: Experiment without binarization and with normalization.
Only iterations from 11 729 to 11 808 are shown.
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Figure 6.9.: Experiment with binarization and without normalization.
Only iterations from 25 549 to 26 184 are shown.
Not visible in the upper plot: In iteration 25 557 the number of states drops from
7 158 to 935.
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Figure 6.10.: Experiment with binarization and with normalization.
Only iterations from 18 589 to 19 022 are shown.
Not visible in the upper plot: In iteration 18 592 the number of states drops from
4 488 to 861.
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11808 # 15456
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Figure 6.11.: The last mergers in the experiment without binarization and with normalization.
This graphics is a small excerpt of the output of:
Vanda cbsm show-info --int2tree int2tree.bin.gz info-000011808.bin.gz
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6.6. Experiments with the Penn Treebank

NP Noun Phrase Phrasal category that includes all constituents
that depend on a head noun.

VP Verb Phrase Phrasal category headed a verb. [sic]

Table 6.3.: Meaning of some bracket labels in the Penn Treebank. Excerpt from Section 2.1 of
treebank_3/docs/prsguid1.pdf from the Penn Treebank.

2. CD Cardinal number
3. DT Determiner
7. JJ Adjective
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or preset participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present

Table 6.4.: Meaning of some part-of-speech tags in the Penn Treebank. Excerpt from Section 3
of treebank_3/docs/tagguid1.pdf from the Penn Treebank. The numbering is
taken over from the original table just for reference. The original table contains 36
part-of-speech tags.
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of the states (trees) are omitted because they are all labeled NP or VP for the respective tree;
e.g., DT NN stands for the tree NP(DT, NN). Note that every listed tree has height 2; any larger
trees are subsumed by the rightmost leaf in both trees. Tables 6.3 and 6.4 list the meaning of
the bracket labels and part-of-speech tags occurring in Figure 6.11.

Since the bracketing F-measure gets worse after conducting most of the depicted merges,
the distinction between the different states represented by the leaves seems valuable. Some of
the distinctions are even linguistically sensible. For example, in the NP tree, the second leaf
subsumes some noun phrases that have a possessive ending (POS). This is sensible because
in general you cannot interchange such a noun phrase with another one without making a
sentence ungrammatical, e.g., you may say “Mary’s bike is new”, but not “He bike is new”
(except “He bike” is, e.g., a company name). The fourth leaf only subsumes noun phrases
that start with a determiner (DT; but note that DT also appears below the sixth leaf). Also this
seems sensible: You may say “The bike is fast”, but not “Car is fast.” The sixths leaf subsumes
noun phrases that deal with nouns that are not proper nouns (NN and NNS, but not NNP and
NNPS). It is not so clear whether this is sensible, especially since singular and plural nouns are
mixed together.

Problems We continue to focus on the experiment without binarization and with normal-
ization as a concrete example. Nevertheless, the stated problems also occur in the other exper-
iments.

Figure 6.12 visualizes the evaluations of the considered mergers of the first iterations. Based
on the heuristic, the algorithm considers only some of the possible mergers for evaluation. We
say these mergers lie in the beam. Recall that the mergers that lie in the beam are sorted by
their heuristic value (cf. Figure 6.2). The position of a merger within the beam is called its beam
index. In Figure 6.12 the mergers that lie in the beam of a specific iteration (x-axis) are depicted
as pixels in the vertical direction, while the vertical position corresponds to the merger’s beam
index (y-axis). The evaluation of a merger is encoded by its pixel’s color (scale on the right-
hand sinde). The merger that is eventually applied in the respective iteration is highlighted by
a blue circle. The figure shows that only in the first iterations a chosen merger can be located
anywhere in the beam (blue circles) and many other good mergers are available (yellow/orange
pixels). But after some iterations the chosen merger is either at the bottom of the beam or at
the upper end. The reason is that many states in the canonical wta have count 1 because the
corresponding (sub)trees occur just once in the corpus. Also, 1 is the lowest non-zero count
that we get with our corpus. Therefore, the heuristic lets the algorithm prefer states with count
1 over other states for merging. Since there are so many states with count 1 in the beginning,
there are enough different pairs of such states for building mergers to completely fill up the
beam until iteration 6 242 (not visible in the plot). For many iterations, the beam only covers
a fraction of these mergers of states with count 1. In the implementation, the mergers that lie
in the beam are always enumerated in the same order (except for mergers that contain states
that resulted from earlier mergers). Therefore, the mergers that are good w.r.t. the evaluation
and make it into the beam are exhausted after some iterations. After that, often all mergers
in the beam have the same evaluation (large red area); in that case the algorithm just chooses
the first merger in the beam. Only sometimes better mergers slide into the beam from above
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Figure 6.12.: Evaluation of the consideredmergers in the first iterations of the experiment with-

out binarization and with normalization. The circles mark the mergers that were
eventually chosen based on the evaluation.
The color map is a fraction of the output of:
Vanda cbsm render-beam --rle --colormapmin=-4 --colormapmax=0

--chunksize=20 --chunkcruncher=maximum statistics-evaluations.csv 0 output.png
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because already applied mergers from earlier iterations make room for other mergers. The
implementation offers the option --shuffle to (pseudo‑)randomize the order of mergers with
the same heuristic and hence randomize which of those appear in the beam. Unfortunately, we
have not yet conducted enough experiments to judge if this improves the training result.

Figures 6.7 and 6.8 show a huge drop in the state count after iteration 15 246 and after iter-
ation 11 738, respectively. For the experiments in Figures 6.9 and 6.10, the drops at the begin-
ning of the plotted intervals are not visible and only mentioned in the caption, but you find
other noticeable drops in iteration 26 140 and in iteration 18 986, respectively. This is presum-
ably due to our greediness assumption (cf. Assumption 6.3.3). The algorithm prefers the best
merger in every iteration, but at some point there are only bad mergers left. Bad mergers tend
to be rather big mergers, which explains the drop in the state count. Interestingly, normaliza-
tion does not seem to have a significant effect on this behavior. It might be worth trying some
kind of beam search instead of our greedy approach to allow the algorithm to deviate from the
best merger in an iteration if this gives rise to better options in a later iteration.

Despite the relatively small corpus, the runtimes of the trainings in our experiments are
rather long with our current implementation:

binarization normalization runtime20

no no 2.9 d
no yes 2.1 d
yes no 38.3 d
yes yes 13.7 d

Table 6.5.: Runtimes of our implementation of cbsm (Algorithm 6.1) for the first 1 921 trees
from the Penn Treebank.

The runtime is not evenly spread over all iterations. One might expect that the runtime
per iteration gets smaller with the size of the wta, but we get a completely different picture.
Figure 6.13 shows the runtimes per iteration for the experiment without binarization and with
normalization. Up to iteration 10 566 no iteration takes longer than 1.6s – this is why we
omitted the first 10 000 iterations in the figure. But this changes dramatically in the following
iterations. The runtimes in the highlighted area sum up to 95 % of the complete runtime, but
only 7 % of the iterations contribute to that sum. It turns out that many of the explored mergers
in the highlighted iterations are relatively large and that most of the runtime is spent with
saturation of mergers (cf. saturate in cbsm, Algorithm 6.1). This is understandable since the
algorithm works greedily (cf. Assumption 6.3.3) and therefore applies all the cheap mergers
(that are mostly relatively small) in the earlier iterations. Conversely, the good news is that
93 % of the iterations are rather cheap and saturation is not a problem at all. To mitigate the
expensive saturation, inmany of the iterations it might be possible to stop the loop in saturate
earlier if there already is a good fully saturated other merger and it is predictable that the loop
cannot lead to a better merger.

20 | The training was conducted with an Intel® Xeon® Processor E5-2630 v2 (15M Cache, 2.60 GHz). The numbers
might not be perfectly accurate because occasionally other demanding processes were run in parallel.
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Figure 6.13.: Runtime20 per iteration for the experiment without binarization and with normal-
ization.

6.7. Comparison to the Approach of Carrasco, Oncina, and
Calera-Rubio [COC01]

In this section we investigate an algorithm that was introduced by Carrasco, Oncina, and
Calera-Rubio [COC98; COC01].21 The algorithm is called tree language inference from prob-
abilistic samples (tlips, cf. Algorithm 6.2). The input and output of this algorithm are similar to
the input and output of our count-based state merging algorithm (cbsm, Algorithm 6.1): The
algorithm takes a corpus as input, infers a probabilistic, bottom-up deterministic wta from the
corpus, and outputs this wta. If the corpus is large enough, the output wta at least accepts the
trees from the corpus and, depending on the corpus, the output wta might also generalize the
corpus [COC01, Theorem 3].
In the following we give an intuitive introduction to tlips (Algorithm 6.2). For the formal de-

tails we refer to the original publications. Afterwards we compare tlips to cbsm (Algorithm 6.1).
Note that Rafael C. Carrasco kindly provided an implementation of tlips (Algorithm 6.2) and

published it on GitHub.22 For our investigations, however, we mostly used our own implemen-
tation in Vanda (command Vanda pdta).

The Algorithm Algorithm 6.2 (tlips) expects a corpus 𝑐 over trees as input. It is assumed
that the corpus 𝑐 was sampled according to a probability distribution defined by a bottom-up
deterministic, probabilistic wta ℳ. That means, 𝑐 shall be the result of |𝑐| random choices of
a tree according to the probability distribution ⟦ℳ⟧. Therefore technically only integers are
possible as image of 𝑐; we keep this in mind without changing the definition of corpora.
Viewing the corpus as a random sample ofℳ gives rise to the key idea: The larger the corpus,

the higher the probability that relative frequencies in the corpus are a good approximation

21 | There are two very similar publications from the same authors. Most of the time we will only reference the
newer one.

22 | https://github.com/rccarrasco/tlips
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of corresponding probabilities of ℳ. Algorithm 6.2 (tlips) shows the approach of Carrasco,
Oncina, and Calera-Rubio [COC01] in our own notation. By comparing relative frequencies,
tlips implicitly builds up equivalence classes of subtrees from the corpus. If the corpus was a
good sample of ⟦ℳ⟧, then these equivalence classes correspond to the states of ℳ.

The function comp determines if two trees belong to the same equivalence class. For this
purpose, the two trees are put in different contexts.23 If for the same contexts the statistics for
the two trees are similar, then these two trees are considered equivalent.

Let us discuss this idea in more detail. Let 𝛴 be the alphabet of ℳ. To ease the notation, we
define ⟦ℳ⟧(𝑇 ) = ∑𝑡∈𝑇⟦ℳ⟧(𝑡) for 𝑇 ⊆ T𝛴. Let 𝑡 ∈ T𝛴. Based on ⟦ℳ⟧ and depending on 𝑡,
we define the probability distribution 𝑝𝑡 over contexts such that for every 𝑠 ∈ C𝛴 we have24

𝑝𝑡(𝑠) = ⟦ℳ⟧(C𝛴 ⋅ 𝑠 ⋅ 𝑡)
⟦ℳ⟧(C𝛴 ⋅ 𝑡)

.

Intuitively, if an according to ⟦ℳ⟧ randomly chosen tree 𝑡′ contains 𝑡 as a subtree, then 𝑝𝑡(𝑠)
is the probability that 𝑡′ also contains 𝑠⋅𝑡. Let 𝑡1, 𝑡2 ∈ T𝛴. It turns out that, if25 r𝑡1

ℳ(𝜀) = r𝑡2
ℳ(𝜀),

then 𝑝𝑡1
= 𝑝𝑡2

[COC01, Equation 17]. So, if 𝑝𝑡1
≠ 𝑝𝑡2

, then r𝑡1
ℳ(𝜀) ≠ r𝑡2

ℳ(𝜀). This can be
seen as (another) generalization of the Myhill-Nerode Theorem [HU79, Theorem 3.9]; other
generalizations exists for (unweighted/𝔹-weighted) tree automata [GS15, Theorem 2.7.1] and
for deterministic, probabilistic ℙ-weighted string automata [CO99, Equation 23].

Instead of checking if 𝑝𝑡1
= 𝑝𝑡2

, tlips (Algorithm 6.2) performs the following similar check
[COC01, Equation 18; COC98, Equation 16]:

∀𝑠 ∈ C𝛴 : ∀𝑟 ∈ C1
𝛴 : 𝑝𝑠⋅𝑡1

(𝑟) = 𝑝𝑠⋅𝑡2
(𝑟). (6.8)

Note that 𝑟 is a context of depth one. If this condition holds, then tlips assumes that 𝑡1 and
𝑡2 are equivalent. Of course, tlips does not know any of the involved probability distributions
because ℳ is unknown to tlips. Instead tlips uses the relative frequencies of subtrees in the
corpus to estimate the needed probabilities.

This is implemented in the function comp and Figure 6.14 visualizes the calculation of the
estimated probabilities. Using the counts from the corpus, the probabilities from above are
estimated as follows:

𝑝𝑠⋅𝑡1
(𝑟) ≈ 𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡1)

𝑐(𝑠 ⋅ 𝑡1)
and 𝑝𝑠⋅𝑡2

(𝑟) ≈ 𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡2)
𝑐(𝑠 ⋅ 𝑡2)

,

where 𝑐 is defined as in line 1 in tlips (Algorithm 6.2). Note that these fractions are calculated
in the function differ, which is called from comp. Since these fractions are only estimations,
in contrast to the probabilities in Equation (6.8), the fractions are not compared exactly. Instead
it is checked if the difference of these fractions exceeds a certain threshold. If this is the case,

23 | Here by contexts we actually mean the special trees as we have defined them in Section 2.3 on page 32.
24 | In fact, we are dealing with conditional probabilities here. To avoid diving too deep into probability theory, we

do not use the typical notions and notations for conditional probabilities.
25 | Recall that r𝑡

ℳ is the unique non-zero weighted run of a bottom-up deterministic automaton ℳ on a tree 𝑡.
Hence, r𝑡

ℳ(𝜀) is the root state of this unique run. If such a run does not exists, we define r𝑡
ℳ(𝜀) = ∅ assuming

∅ is not a state of ℳ.
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Algorithm 6.2 Tree Language Inference from Probabilistic Samples [COC01, Figures 2–4]
Input: • corpus 𝑐 over T𝛴

• 𝛼 such that 0 < 𝛼 ≤ 2
Output: • set of states 𝑄

• set of transitions 𝛥

1: let 𝑐 be the corpus over T𝛴 such that for every 𝑠 ∈ T𝛴
𝑐(𝑠) = ∑𝑡∈supp(𝑐) ∑𝜌∈pos(𝑡) : 𝑡|𝜌=𝑠 𝑐(𝑡) ▷ note that supp(𝑐) = subs(supp(𝑐))

2: 𝑄 ← ∅
3: 𝑊 ← {𝑡 ∣ 𝑡 ∈ supp(𝑐), ht(𝑡) = 1}
4: while 𝑊 ≠ ∅ do
5: choose 𝑡 = 𝜎(𝑡1, …, 𝑡𝑘) from 𝑊 such that ht(𝑡) = min{ht(𝑠) ∣ 𝑠 ∈ supp(𝑐)}
6: 𝑊 ← 𝑊 ∖ {𝑡}
7: if ∃𝑡′ ∈ 𝑄: comp(𝑡, 𝑡′) then
8: 𝛥 ← 𝛥 ∪ (𝑡′ → 𝜎(𝑡1, …, 𝑡𝑘))
9: else
10: 𝑄 ← 𝑄 ∪ {𝑡}
11: 𝛥 ← 𝛥 ∪ (𝑡 → 𝜎(𝑡1, …, 𝑡𝑘))
12: 𝑊 ← 𝑊 ∪ {𝛾(𝑠1, …, 𝑠𝑘) ∈ supp(𝑐) ∣ 𝛾 ∈ 𝛴, 𝑠1, …, 𝑠𝑘 ∈ 𝑄, ∃𝑖 ∈ [𝑘] : 𝑠𝑖 = 𝑡}

13: function comp(𝑡1, 𝑡2 ∈ T𝛴)
14: for 𝑠 ∈ C𝛴 such that 𝑠 ⋅ 𝑡1 ∈ supp(𝑐) or 𝑠 ⋅ 𝑡2 ∈ supp(𝑐) do
15: for 𝑟 ∈ C1

𝛴 do
16: if differ(𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡1), 𝑐(𝑠 ⋅ 𝑡1), 𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡2), 𝑐(𝑠 ⋅ 𝑡2)) then
17: return false
18: return true

19: function differ(𝑓, 𝑚, 𝑓 ′, 𝑚′)
20: return ∣ 𝑓

𝑚 − 𝑓′

𝑚′ ∣ > √ 1
2𝑚 log 2

𝛼 + √ 1
2𝑚′ log 2

𝛼

𝑟

𝑠

𝑡1

∣ 𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡1)
𝑐(𝑠 ⋅ 𝑡1)

− 𝑐(𝑟 ⋅ 𝑠 ⋅ 𝑡2)
𝑐(𝑠 ⋅ 𝑡2)

∣

𝑟

𝑠

𝑡2

Figure 6.14.: Visualization of the functions comp and differ.
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then 𝑡1 and 𝑡2 are assumed to be not equivalent. Checking the threshold is implemented in the
function differ. Note that the threshold gets lower with a growing number of occurrences of
the considered subtrees in the corpus. This makes sense because intuitively the estimations are
more reliable for large corpora.

The main loop of tlips (line 4 in Algorithm 6.2) examines (sub)trees from the corpus in as-
cending order of their height. Trees that still need examination are held in the set 𝑊. For
every examined tree it is checked if, according to comp, an equivalent tree was found in an
earlier iteration. If that is the case, the equivalent tree is reused to create new transitions
(line 8). Otherwise the current tree is added to the set of states (line 10) and used for new
transitions (line 11), and also new trees that need examination are added to 𝑊 (line 12). Note
that possibly not every (sub)tree from supp(𝑐) will be examined in the main loop because it
might never be put into 𝑊. We will revisit this fact in the comparison of tlips (Algorithm 6.2)
to cbsm (Algorithm 6.1).

The output of tlips (Algorithm 6.2) only consists of states and (non-zeroweighted) transitions
of a wta without concrete weights. However, with the knowledge of the states and the non-
zero weighted transitions, it is easy to also infer their weights from the corpus. Note that tlips
guarantees bottom-up determinism because it only adds trees to 𝑊 that will induce right-hand
sides of transitions that do not yet occur in 𝛥 when the tree is added (cf. line 12).

Comparison Let us now compare tlips (Algorithm 6.2) with cbsm (Algorithm 6.1). We start
with the similarities.

Both algorithms output (at least the ingredients for) bottom-up deterministic wtas. For this
purpose, both algorithms need a corpus over trees as input. One can argue that both algorithms
are rather similar because they both use the canonical wta of the given corpus as their starting
point and produce their outputs by merging states: This is obvious for cbsm (Algorithm 6.1),
and in tlips (Algorithm 6.2) we can interpret 𝑐 as the counts of the states of the canonical
automaton, and therefore we can interpret the equivalence classes defined by comp as the
equivalence classes of a merger that is applied to the canonical wta to produce another wta
ℳ. The output of tlips (Algorithm 6.2) consists of states and transitions from this wta ℳ, but
note that in some cases the output does not contain all states and transitions of this wta (cf.
the third item in the following).

However, besides these similarities we identify four important differences between the two
algorithms.

• The most obvious difference is that cbsm (Algorithm 6.1) outputs a sequence of wtas
while tlips (Algorithm 6.2) outputs the ingredients for only a single wta.

• Another difference is that cbsm (Algorithm 6.1) does not distinguish between corpora
that only differ by a scaling factor, i.e., a corpus 𝑐 and a corpus 𝑐𝑠 where 𝑐𝑠(𝑎) = 𝑠⋅𝑐(𝑎) for
every 𝑎 ∈ dom(𝑐) and some 𝑠 > 0 yield the same results with cbsm. This follows directly
from Lemma 4.6.2 since the decisions of cbsm are exclusively based on the likelihood.
In contrast to that, tlips (Algorithm 6.2) might yield different results for different scalings
of a corpus. This is due to the fact that tlips compares relative frequencies based on a
threshold that depends on the corpus (cf. function differ). For example, let 𝑐 be the
corpus where 𝑐(𝛾𝑛(𝛼)) = 210−𝑛 for 𝑛 ∈ [10] and everything else is 0; by 𝛾𝑛(𝛼) we
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denote the tree consisting of a chain of 𝑛 𝛾-nodes followed by an 𝛼-leaf. The algorithm
will compare 𝑐(𝛾𝑛(𝛼))/𝑐(𝛾𝑛−1(𝛼)) with 𝑐(𝛾𝑛−1(𝛼))/𝑐(𝛾𝑛−2(𝛼)). These fractions both
equal 1/2 for every 𝑛 ≤ 10. But for 𝑛 = 11, the first fraction equals 0 and therefore
differs from the second. Yet, since 𝑐(𝛾10(𝛼)) = 1 and 𝑐(𝛾9(𝛼)) = 2, the threshold in
function differ will be relatively large, so differ returns false (if 𝛼 < 𝑥 with 𝑥 ≈ 1.68).
The algorithmwill output transitions of a wta that accepts any chain of 𝛾-nodes followed
by an 𝛼-leaf.
If we scale the corpus by 𝑠 = 1000, the situation is different. The values of the fractions
are not affected by the scaling since the scaling cancels out. But the thresholds in differ
is much smaller with this scaled corpus. For 𝑛 = 11 we now have 𝑐𝑠(𝛾10(𝛼)) = 1000
and 𝑐𝑠(𝛾9(𝛼)) = 2000. Therefore only for extremely small 𝛼 (𝛼 < 𝑥 with 𝑥 ≈ 6 ⋅ 10−75)
the function differ returns false, otherwise it returns true. For any large enough 𝛼, tlips
will return transitions of a wta that accepts only the trees from the corpus.
This also makes sense intuitively: Recall that it is assumed that the corpus is sampled
from an unknown wta. If we consider 𝑐𝑠 with 𝑠 = 1000, then any tree in supp(𝑐𝑠) was
sampled at least 1000 times. Therefore it is rather likely that the unknown wta assigns a
very low probability or even 0 to the trees that are not in supp(𝑐𝑠). Conversely, consid-
ering the unscaled corpus 𝑐 it is rather likely that we missed many non-zero weighted
trees while sampling.

• A third difference is that cbsm (Algorithm 6.1) guarantees that the output wta accepts the
trees in the corpus. This is not the case for tlips (Algorithm 6.2). For example consider a
wta that accepts the tree 𝛿(𝛾(𝛼)) and any chain of 𝛾-nodes followed by an 𝛼-leaf, but no
other tree. For a corpus 𝑐 sampled from that wta, we expect that 𝑐(𝛼) and 𝑐(𝛾(𝛼)) get
some extra counts in contrast to trees with longer 𝛾-chains because 𝑐(𝛼) and 𝑐(𝛾(𝛼)) are
affected by 𝑐(𝛿(𝛾(𝛼))). But this small contrast will only exceed the threshold in differ
if the corpus is large enough. With a small corpus, comp(𝛼, 𝛾(𝛼)) might yield true, so
tlips assumes that 𝛼 and 𝛾(𝛼) are equivalent. In this case, the tree 𝛿(𝛾(𝛼)) would never
be added to 𝑊 and therefore tlips would not generate a transition for the 𝛿-node.

• Also, the two algorithm strongly differ in their runtime performance. Recall that our
implementation of cbsm (Algorithm 6.1) takes days to weeks using the first 1 921 trees
from the Penn Treebank as corpus (cf. Table 6.5). With the same corpus, our implemen-
tation of tlips (Algorithm 6.2) only takes 197 s in the worst case. We get the worst run-
time with 𝛼 = 2 because then the threshold in differ is always 0, and therefore differ
will maximally often return true, leading to a maximal number of iterations of the main
loop (line 4). The resulting wta when using 𝛼 = 2 is rather close to the canonical wta
because for nearly every pair of trees comp returns false. With 𝛼 = 1.9 the result is still
rather close to the canonical wta, but the resulting wta does only accept 5 of the 1 921
trees from the corpus (cf. the third difference). This cannot get better with lower values
for 𝛼 because the more pairs of trees are considered as equivalent, the lesser trees are
added to 𝑊 for future examinations.

Hence, the third difference makes it difficult to use tlips (Algorithm 6.2) for natural language
purposes because natural language corpora are probably too small a sample for tlips. Also, a
wta might not be powerful enough to really capture natural language. It is not clear, what tlips
outputs if the corpus was sampled with a more powerful device than a wta. Nevertheless, for
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natural language purposes, maybe tlips can be altered to mitigate those problems or maybe the
output of tlips can be used as an input for another algorithm that uses the output as starting
point to search for a better wta.

6.8. Conclusion and Further Research

In this chapter we developed the count-based state merging algorithm (cbsm, Algorithm 6.1)
aiming at applications in natural language processing. We conducted several experiments to
investigate the performance of the algorithm. Also, we recalled the algorithm for tree language
inference from probabilistic samples (tlips, Algorithm 6.2) from the literature [COC01], and we
compared cbsm to tlips.

The experiments with artificial wtas (Section 6.5) show that, in many cases, cbsm (Algo-
rithm 6.1) is able to recover a wta from a representative corpus. The experiments with the
Penn Treebank (Section 6.6) show that cbsm is able to produce wtas that perform better than
the trivially computable read-off wta.

Besides these positive results, we identified several problems and gave ideas for improve-
ments. The major problem that needs to be solved before cbsm can be used in real applications
is the long runtime (cf. Table 6.5). Also, for real parsing applications an efficient parsing al-
gorithm that is able to deal with practical problems like unknown words is needed. Because
of these current limitations, we omitted a comparison to the Berkeley Parser whose training
algorithm was investigated in Chapter 5.

We have seen that bottom-up determinism makes calculations of likelihoods and maximum-
likelihood estimates cheap, but maintaining bottom-up determinism – at least with our imple-
mentation – is rather expensive (cf. discussion of Figure 6.13). It is not clear if bottom-up de-
terminism is worth these costs: Maybe bottom-up determinism inherently limits the potential
of wtas for applications in natural language processing; at least theoretically bottom-up deter-
minism is a limitation (cf. Theorem 6.1.2). Note that the state-splitting approach in Chapter 5
is not restricted to bottom-up deterministic wtas.

Last but not least we stated Conjecture 6.2.2, which still lacks a proof.
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This chapter is a substantially extended version of the following paper:
Toni Dietze. “Equivalences between Ranked and Unranked Weighted Tree Au-
tomata via Binarization” [Die16]

In the Penn Treebank [MSM93], there are trees with nodes that have a particularly large
rank, e.g., the subtrees shown in Figure 7.1. One may think of sentences whose constituent
trees require nodes with even larger ranks, e.g., by using a noun phrase that contains a large
compound noun accompanied by many adjectives. Of course, the larger the ranks of the nodes
in the constituent tree the longer the sentence, and the longer the sentence the harder it is to
understand the sentence. However, it is not clear when a sentence is too long or when the
rank of a node is too large. Therefore, when creating a grammar or an automaton to deal with
constituent trees, we do not want to put a fixed limit on the maximal rank of nodes. Instead,
we want to allow arbitrary large ranks, e.g., when listing adjectives before a noun in a noun
phrase.
This is a problem if we want to capture the set of all valid syntax trees with a wta. In fact:

A wta allows only finitely many different ranks in all non-zero weighted trees. This is already
due to the use of ranked alphabets; but even if we used alphabets without ranks (similar to
wcfg-las, cf. Section 3.2) and, consequently, allowed wtas to use an arbitrary number of states
on the right-hand side of transitions, a wta can still only allow finitely many ranks because the
ranks are determined by the transitions and we would only allow a finite number of non-zero
weighted transitions.
These limitations of wtas are mitigated by binarization. Binarization is about encoding ar-

bitrary trees into binary trees, i.e., trees where all nodes have at most rank 2, such that the
original tree can be reconstructed from the binary tree. We use the term binarization on three
different abstraction levels:

• In the most general context, by binarization we mean the idea of reversibly transforming
trees into binary trees.

• In a more concrete setting, a binarization or binarization strategy assigns to every tree 𝑡
at least one binary tree 𝑡′ such that the original tree 𝑡 can be unambiguously recovered
from each assigned binary tree 𝑡′.

• Finally, we also call 𝑡′ itself a binarization (of 𝑡).
The current abstraction level will always be clear from the context. We also use the verbs bina-
rize and unbinarize for the application of a binarization strategy and for undoing a binarization,
respectively.
Figure 7.2 shows an example tree and its binarization according to left-branching binariza-

tion. This binarization strategy is introduced in Section 7.2.1. It replaces the children of a node
by a chain of Cons symbols terminated by Null and the original children are attached left to

binarization
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NP-SBJ

DT NNP NNP NNP JJ NN NN NN

A Financial Times-Stock Exchange 100-share index option contract

treebank_3/parsed/mrg/wsj/00/wsj_0097.mrg, subtree of 34th tree

NP-SBJ

JJ NNP NNP JJ NN NN NNP NNP `` NNP '' NNP

former Gulf Power senior vice president Jacob F. `` Jake '' Horton

treebank_3/parsed/mrg/wsj/02/wsj_0279.mrg, subtree of 14th tree

Figure 7.1.: Example subtrees from the Penn Treebank 3 (LDC99T42)14, page 110 containing nodes
with many child trees.
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Figure 7.2.: An unranked tree and its binarization according to left-branching binarization.
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unranked tree corpus

ranked tree corpus binarize

train wuta training

wta unbinarize wuta

parse wuta parsing

ranked tree unbinarize

unranked tree

sentence

Figure 7.3.: Solid part: Possible use of binarization for training and parsing with wtas. Dashed
part: Viewing the solid part as training and parsing with wutas. Data is depicted
by rounded boxes, functions are depicted by angular boxes.

the chain.
A binarization strategy can now be combined with a wta to represent a weighted unranked

tree language: The weight of an unranked tree is then the weight assigned by the wta to the
binarization of this tree. If there are several binarizations for the unranked tree, then their
weights are summed up.
The solid part of Figure 7.3 shows a way how binarization can be incorporated into exist-

ing training and parsing algorithms for wtas: Before training, the trees of a training corpus are
binarized, and after parsing, the result is unbinarized. Note that the training corpus and the
parsing result consist of unranked trees. Since the children of an unranked node are typically
distributed over several nodes by binarization, the training can now adapt the number of chil-
dren of the unranked node.
For parsing, it is desirable that the maximal number of states in a transition of a wta (or a

similar formalism) is low in order to have a low parsing complexity [BKV13]. For example
the well-known CYK algorithm for cfg parsing requires that the cfg is in Chomsky normal
form, where the number of non-terminals in a rule is either one or three [HU79, Sections 4.5
and 6.3]. Fortunately, the transitions of a wta resulting from training with a binarized corpus
have at most three states. Hence, a wta resulting from the approach presented in Figure 7.3 is
well-suited for parsing with a low complexity.
The combination of a binarization strategy and a wta can be transformed into a weighted un-

ranked tree automaton (wuta). A wuta recognizes an unranked tree language without a detour
through binarization. This is indicated by the dashed part of Figure 7.3.
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This Chapter In this chapter we investigate three different binarization strategies: left-
branching binarization (Section 7.2.1), right-branching binarization (Section 7.2.2), and mixed
binarization (Section 7.2.3). For each strategy we characterize the weighted unranked tree lan-
guage resulting from combining a wta with the binarization strategy. In fact, to simplify the
formalization, we use weighted sorted tree automata (wstas) instead of wtas. For the characteri-
zation of the weighted unranked tree languages, we introduceweighted unranked tree automata
(wutas). For each of our binarization strategies, we show that for every wsta combined with
the binarization strategy there is a wuta that recognizes the same weighted unranked tree lan-
guage and vice versa (Corollaries 7.2.2 and 7.2.4 and Theorem 7.2.9). This is also the case if we
only allow probabilistic wstas and probabilistic wutas (Theorems 7.3.18, 7.3.22 and 7.3.24). All
the proofs provided for our results are constructive.

With these results the training in Figure 7.3 can also be seen as a training for wutas because
we can construct a wuta from the binarization and the wta resulting from training.

Related Work The three binarization strategies we investigate are inspired by the binariza-
tions presented by Matsuzaki, Miyao, and Tsujii [MMT05]. They use their binarizations for
training and parsing in a way similar to Figure 7.3. Our results give a formal explanation for
why the performance of their training is rather independent from the used binarization.

For the unweighted case, binarizations (also called encodings) were investigated by, e.g.,
Comon, Dauchet, Gilleron, Löding, Jacquemard, Lugiez, Tison, and Tommasi [Com+07, Sec-
tion 8.3]. Their first-child-next-sibling encoding is similar to our left-branching binarization.
Their extension encoding is also used to define stepwise tree automata [CNT04]. A stepwise
tree automaton is defined like a (ranked) tree automaton. It accepts an unranked tree if it ac-
cepts the extension encoding of the tree while the automaton is interpreted as a (ranked) tree
automaton. Högberg, Maletti, and Vogler [HMV09, Lemmas 4.2 and 6.2] extend this connection
to the weighted case and show that weighted stepwise tree automata and wutas are equally
powerful.

Goguen,Thatcher,Wagner, andWright [Gog+77] introduced the idea to represent a grammar
or an automaton, e.g., a wuta, by a many-sorted algebra and a homomorphism. This idea
can similarly be found in other formalisms, e.g., generalized context-free grammars [Pol84]
and interpreted regular tree grammars [KK11]. In this work we use wstas instead of using
many-sorted algebras directly.

Weighted unranked tree automata (wutas) were introduced byDroste and Vogler [DV11, Sec-
tion 3].1 They were further investigated by Götze [Göt17], where the semiring weight struc-
ture is replaced by the more general structure of tree valuation monoids. Note that unranked
tree automata (without weights) were already introduced by Thatcher [Tha67, Section Ⅲ] and
called pseudoautomata.

The definition of wutas incorporates weighted string automata (wsas), which were intro-
duced by Eilenberg [Eil74, Chapter Ⅵ, Section 6] and called 𝐾-𝛴-automata, where 𝐾 is a
semiring and 𝛴 an alphabet.

1 | Note that Droste andVogler [DV11] use similar names and abbreviations likewe do, butwith differentmeanings:
What is called a wuta by us, that is called a weighted tree automaton (wta) by them. What is called a wta by
us, that is called a ranked wta by them.
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In Section 7.3.2 the idea of Construction 7.3.11 and Lemma 7.3.12 is also known as weight
pushing or just pushing in the context of minimization of weighted string automata and trans-
ducers over various semirings [Moh97, page 296; Moh00, Sections 2.1 and 3.3; Eis03; Moh05,
Section 4.2.3; Moh09, Section 7.3] and weighted tree automata [MQ11]. Construction 7.3.13
andTheorem 7.3.14 are similar to what is known as renormalizationwhen dealing with weight-
ed context-free grammars (wcfgs) over the probability semiring [AMP99, Section 5; Chi99,
Corollary 3; NS03, Section 3]. However, to renormalize a wcfg, its inside weights are required,
which can only be approximated in general. Since we concentrate on wsas over the probability
semiring, we are able to give an exact construction (Construction 7.3.13) and sufficient condi-
tions when the construction is applicable (Theorem 7.3.14).
Our results imply that the class of weighted languages recognizable by probabilistic wsas

is closed under reversal (Corollary 7.3.16). Paz [Paz71, Chapter Ⅲ, Section A, Theorem 1.8]
presents an analogous result for his probabilistic automata, which are slightly different from
our probabilistic wsas. His construction requires an exponential number of states in compari-
son to the given automaton. Our definition of probabilistic wsas allows the presented construc-
tion (reversal followed by Construction 7.3.13), which does not change the state set at all. Paz’
construction can be easily adapted to our case, yet it is unclear if our construction can also be
adapted to his case.

7.1. Preliminaries

In this chapter we will use sorts to enforce simple properties of trees and wtas. This will help
us in the formalization of binarization and in related proofs. For this purpose we define sorted
alphabets. We then define trees over certain sorted alphabets and sorted wtas; both are just
restrictions of ranked trees and wtas without sorts, respectively.
Let 𝑆 be a non-empty set of elements we call sorts. An 𝑆-sorted alphabet 𝛴 is a family

(𝛴(𝑠) ∣ 𝑠 ∈ 𝑆) of pairwise disjoint sets 𝛴(𝑠) where ⋃𝑠∈𝑆 𝛴(𝑠) is finite and non-empty. To
signify the sort of a symbol 𝜎 ∈ 𝛴(𝑠) for some 𝑠 ∈ 𝑆, we write 𝜎(𝑠). Recall that we also denote
the set ⋃𝑠∈𝑆 𝛴(𝑠) by 𝛴 and the meaning of 𝛴 will always be clear from the context. Note that

• 𝛴 = ⋃𝑠∈𝑆 𝛴(𝑠) is an alphabet,
• if 𝑆 is a singleton, then an 𝑆-sorted alphabet is equivalent to an alphabet (without sorts)
since the single sort adds no information at all, and

• our definition of ranked alphabets is identical to the definition of ℕ-sorted alphabets.
Let 𝑆 be a non-empty set and 𝛴 be an (𝑆 × 𝑆∗)-sorted alphabet. The family of (𝑆-sorted)

trees over 𝛴, denoted by 𝕋𝛴 = (𝕋(𝑠)
𝛴 ∣ 𝑠 ∈ 𝑆), is defined as the smallest family (𝑇 (𝑠) ∣ 𝑠 ∈ 𝑆)

such that for every (𝑠0, 𝑠1…𝑠𝑘) ∈ (𝑆 × 𝑆∗), for every 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘), for every 𝑡1 ∈ 𝑇 (𝑠1),
…, 𝑡𝑘 ∈ 𝑇 (𝑠𝑘), we have 𝜎(𝑡1, …, 𝑡𝑘) ∈ 𝑇 (𝑠0). Note that 𝕋𝛴 ⊆ U𝛴, so all notions for unranked
trees are also valid for sorted trees.
We extend the definition of rank to (𝑆 × 𝑆∗)-sorted alphabets 𝛴 by letting rk(𝜎) = |𝑤| for

every𝜎 ∈ 𝛴(𝑠,𝑤) where 𝑠 ∈ 𝑆 and𝑤 ∈ 𝑆∗. With this definitionwe have that rk(𝑡|𝜌) = rk(𝑡(𝜌))
for every 𝑡 ∈ 𝕋𝛴 and 𝜌 ∈ pos(𝑡), i.e., the rank at a position of a sorted tree coincides with the
rank of the symbol at that position. Therefore we view an (𝑆 × 𝑆∗)-sorted alphabet 𝛴 also as
a ranked alphabet. Note that 𝕋𝛴 ⊆ T𝛴 and, if 𝑆 is a singleton, then 𝕋𝛴 = T𝛴.

weight pushing

renormalization

sorts
sorted alphabet

sorted trees (𝕋…)
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7. Binarization

Many-Sorted Algebras Let 𝑆 be a non-empty set and let 𝛴 be an (𝑆 ×𝑆∗)-sorted alphabet.
A 𝛴-algebra is a pair (𝐴, 𝜃) where

• 𝐴 is a family (𝐴(𝑠) ∣ 𝑠 ∈ 𝑆) of pairwise disjoint sets (carrier sets) and
• 𝜃 is a family (𝜃(𝜎) ∣ 𝜎 ∈ 𝛴) of functions (operations) where 𝜃(𝜎) : 𝐴(𝑠1) × … × 𝐴(𝑠𝑘) →

𝐴(𝑠0) for every 𝑘 ∈ ℕ, 𝑠0, …, 𝑠𝑘 ∈ 𝑆, and 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘).
We call 𝛴 the signature of (𝐴, 𝜃), and we call 𝐴 the carrier of (𝐴, 𝜃). Often we refer to a
𝛴-algebra (𝐴, 𝜃) only by its carrier 𝐴.

Let (𝐴, 𝜃) and (𝐵, 𝛿) be two 𝛴-algebras, and let ℎ be a family (ℎ(𝑠) : 𝐴(𝑠) → 𝐵(𝑠) ∣ 𝑠 ∈ 𝑆)
of mappings. The family ℎ is called a homomorphism (from (𝐴, 𝜃) to (𝐵, 𝛿)) if

ℎ(𝑠0)(𝜃(𝜎)(𝑎1, …, 𝑎𝑘)) = 𝛿(𝜎)(ℎ(𝑠1)(𝑎1), …, ℎ(𝑠𝑘)(𝑎𝑘))

for every 𝑘 ∈ ℕ, 𝑠0, …, 𝑠𝑘 ∈ 𝑆, 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘), and 𝑎𝑖 ∈ 𝐴(𝑠𝑖) for every 𝑖 ∈ [𝑘]. Most of
the time we will consider ℎ as a mapping from 𝐴 → 𝐵 where ℎ(𝑎) = ℎ(𝑠)(𝑎) for every 𝑠 ∈ 𝑆
and 𝑎 ∈ 𝐴(𝑠). This is well-defined because the members of 𝐴 are pairwise disjoint. Let ℛ be a
commutative semiring. If ℎ−1(𝑏) is finite for every 𝑏 ∈ 𝐵, then we extend ℎ to mappings from
𝐴 → ℛ by defining

ℎ: (𝐴 → ℛ) → (𝐵 → ℛ), 𝑓 ↦ (𝑏 ↦ ∑
𝑎∈ℎ−1(𝑏)

𝑓(𝑎)).

A 𝛴-algebra 𝐴 is called initial if for every 𝛴-algebra 𝐵 there is a unique homomorphism
from 𝐴 to 𝐵. Intuitively, the elements in the carrier of an initial algebra encode the terms over
the operations of any algebra with the same signature.

The 𝛴-term-algebra is defined as the 𝛴-algebra (𝕋𝛴, 𝜃) where 𝜃(𝜎)(𝑡1, …, 𝑡𝑘) = 𝜎(𝑡1, …, 𝑡𝑘)
for every 𝑘 ∈ ℕ, 𝑠0, …, 𝑠𝑘 ∈ 𝑆, and 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘). Note that the 𝛴-term-algebra is initial
[BL70, Proposition 15, page 127].

Weighted Sorted Tree Automata (wstas) We will now define weighted sorted tree au-
tomata (wstas). It will turn out that wstas are rather similar to wtas; the only difference is that
wstas have sorts attached to states and terminals, and that weights are only defined for transi-
tions where the sorts of the terminal and the states fit together. Analogously to wtas, we will
define a run semantics for wstas. For that purpose we define runs that also have to be compat-
ible with the sorts. The semantics then ranges only over sorted trees.

Definition 7.1.1 (wsta). Let 𝑆 be a set of sorts and ℛ a commutative semiring. An ℛ-weighted
𝑆-sorted tree automaton (ℛ-𝑆-wsta) is a tuple (𝑄, 𝛴, 𝐼, 𝛥) where

• 𝑄 is an 𝑆-sorted alphabet (of states),
• 𝛴 is an (𝑆 × 𝑆∗)-sorted alphabet (of terminals),
• 𝐼: 𝑄 → ℛ is a mapping (root weights), and
• 𝛥 = (𝛥(𝜎) : 𝑄(𝑠0) × … × 𝑄(𝑠𝑘) → ℛ ∣ (𝑠0, 𝑠1…𝑠𝑘) ∈ 𝑆 × 𝑆∗, 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘)) is a
family of mappings (transition weights).

Alternatively, the transition weights 𝛥 could be represented by a mapping

𝛥′ : ( ⋃
(𝑠0,𝑠1…𝑠𝑘)∈𝑆×𝑆∗

𝑄(𝑠0) × 𝛴(𝑠0,𝑠1…𝑠𝑘) × (𝑄(𝑠0) × … × 𝑄(𝑠𝑘))) → ℛ

homomorphism

initial algebra

term algebra

wsta
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with 𝛥′(𝑞0, 𝜎, 𝑞1…𝑞𝑘) = 𝛥(𝜎)(𝑞0, 𝑞1…𝑞𝑘) for every (𝑠0, 𝑠1…𝑠𝑘) ∈ 𝑆 × 𝑆∗, 𝜎 ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘)

and 𝑞0 ∈ 𝑄(𝑠0), …, 𝑞𝑘 ∈ 𝑄(𝑠𝑘). This alternative representation of the transition weights reveals
the similarity between the newly definedwstas and the previously definedwtas (Definition 3.3.1
on page 39).
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-𝑆-wsta. The size of ℳ is defined by size(ℳ) = |supp(𝐼)| +

∑𝜎∈𝛴|supp(𝛥(𝜎))|. For 𝑠 ∈ 𝑆 we call ℳ 𝑠-rooted if for every 𝑠 ∈ 𝑆 ∖ {𝑠} and 𝑞 ∈ 𝑄(𝑠) we
have that 𝐼(𝑞) = 0. We define the relation runℳ ⊆ 𝕋𝛴 ×U𝑄 such that (𝑡, 𝑟) ∈ runℳ iff

• pos(𝑡) = pos(𝑟) and
• for every 𝜌 ∈ pos(𝑡) letting 𝑘 ∈ ℕ and 𝑠, 𝑠0, …, 𝑠𝑘 ∈ 𝑆 such that 𝑟(𝜌) ∈ 𝑄(𝑠) and

𝑡(𝜌) ∈ 𝛴(𝑠0,𝑠1…𝑠𝑘) we have 𝑠 = 𝑠0, i.e., the sort of the state and the terminal at the same
position match.

For (𝑡, 𝑟) ∈ runℳ we say that 𝑟 is a run of ℳ on 𝑡.

Definition 7.1.2 (run semantics of wsta). Letℳ = (𝑄, 𝛴, 𝐼, 𝛥) be anℛ-𝑆-wsta. Theweighted
tree language of ℳ, denoted by ⟦ℳ⟧run, is defined as

⟦ℳ⟧run : 𝕋𝛴 → ℛ, 𝑡 ↦ ∑
𝑟∈runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧′
run(𝑡, 𝑟)

where

⟦ℳ⟧′
run : runℳ → ℛ, (𝑡, 𝑟) ↦ ∏

𝜌∈pos(𝑡)
𝛥(𝑡(𝜌))(𝑟(𝜌), 𝑟(𝜌1)…𝑟(𝜌 rk(𝑡|𝜌))).

Note the similarity to the run semantics of wtas (Definition 3.3.2 on page 39). It is easy to see
that wstas and wtas are equally powerful: For every ℛ-wta ℳ′ we can construct an ℛ-𝑆-wsta
ℳ such that 𝑆 is a singleton and ⟦ℳ⟧run = ⟦ℳ′⟧ (note that the domains of both semantics are
the same since 𝑆 is a singleton). Also, for every ℛ-𝑆-wsta ℳ we can construct an ℛ-wta ℳ′

such that ⟦ℳ′⟧(𝑡) = ⟦ℳ⟧run(𝑡) for every 𝑡 ∈ 𝕋𝛴. By setting to zero the weights of transitions
that are not consistent with the sorts, we immediately get ⟦ℳ′⟧(𝑡) = 0 for every 𝑡 ∈ T𝛴 ∖ 𝕋𝛴.

Weighted Unranked Tree Automata (wutas) We will now introduce weighted unranked
tree automata (wutas). In contrast to wtas, wutas can assign non-zero weights to several trees
where the same terminal appears with different ranks. In order to define wutas, we first have
to define weighted string automata (wsas).

Definition 7.1.3 (wsa). Let ℛ be a commutative semiring. An ℛ-weighted string automaton
(ℛ-wsa) is a tuple (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) where

• 𝑃 is an alphabet (of states),
• 𝛴 is an alphabet (of terminals),
• 𝐽: 𝑃 → ℛ is a mapping (initial weights),
• 𝛱: 𝑃 × 𝛴 × 𝑃 → ℛ is a mapping (transition weights), and
• 𝐹: 𝑃 → ℛ is a mapping (final weights).

By wsa(ℛ, 𝛴) we denote the set of all ℛ-wsas with terminal alphabet 𝛴.
Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an ℛ-wsa. The size of 𝒩 is defined by size(𝒩) = |supp(𝐽)| +

|supp(𝛱)|+|supp(𝐹)|. We define the relation run𝒩 to be the set that contains (𝑤, 𝑟) iff𝑤 ∈ 𝛴∗

and 𝑟 : {0, …, |𝑤|} → 𝑃. For (𝑤, 𝑟) ∈ run𝒩 we say that 𝑟 is a run of 𝒩 on 𝑤.

size of wsta (size)
sort-rooted wsta
runs of wsta (run)

wsa

set of wsa (wsa)
size of wsa (size)
runs of wsa (run)
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Definition 7.1.4 (run semantics of wsa). Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an ℛ-wsa. Theweighted
string language of 𝒩 (by run semantics), denoted by ⟦𝒩⟧run, is defined as

⟦𝒩⟧run : 𝛴∗ → ℛ, 𝑤 ↦ ∑
𝑟∈run𝒩(𝑤)

𝐽(𝑟(0)) ⋅ ⟦𝒩⟧′
run(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|))

where

⟦𝒩⟧′
run : run𝒩 → ℛ, (𝑤1…𝑤𝑛, 𝑟) ↦ ∏

𝑖∈[𝑛]
𝛱(𝑟(𝑖 − 1), 𝑤𝑖, 𝑟(𝑖)).

Definition 7.1.5 (wuta). Let ℛ be a commutative semiring. An ℛ-weighted unranked tree
automaton (ℛ-wuta) is a tuple (𝑄, 𝛴, 𝐼, 𝛥) where

• 𝑄 is an alphabet (of states),
• 𝛴 is an alphabet (of terminals),
• 𝐼 : 𝑄 → ℛ is a mapping (root weights), and
• 𝛥: 𝑄 × 𝛴 → wsa(ℛ, 𝑄) is a mapping.

Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. The size of ℳ is defined by size(ℳ) = |supp(𝐼)| +
∑𝑞∈𝑄,𝜎∈𝛴 size(𝛥(𝑞, 𝜎)). The number of states of ℳ is defined as |𝑄| plus the numbers of
states of all wsas in the image of 𝛥, i.e., |𝑄| + (∑𝒩∈im(𝛥) number of states of 𝒩). We define
the relation runℳ ⊆ U𝛴 ×U𝑄 such that (𝑡, 𝑟) ∈ runℳ iff pos(𝑡) = pos(𝑟). For (𝑡, 𝑟) ∈ runℳ
we say that 𝑟 is a run of ℳ on 𝑡.

Definition 7.1.6 (run semantics of wuta). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. The weighted
tree language of ℳ (by run semantics), denoted by ⟦ℳ⟧run, is defined as

⟦ℳ⟧run : U𝛴 → ℛ, 𝑡 ↦ ∑
𝑟∈runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧′
run(𝑡, 𝑟)

where

⟦ℳ⟧′
run : runℳ → ℛ, (𝑡, 𝑟) ↦ ∏

𝜌∈pos(𝑡)
⟦𝛥(𝑟(𝜌), 𝑡(𝜌))⟧(𝑟(𝜌1)…𝑟(𝜌 rk(𝑡|𝜌))).

By exploiting distributivity it is easy to find the following equivalent semantics. Let 𝑃ℳ
be the set of all states of all wsas in the image of 𝛥. We define the relation ex-runℳ to be
the set that contains (𝑡, 𝑒) iff 𝑡 ∈ U𝛴 and 𝑒 = (𝑟, 𝑠) where 𝑟 ∈ runℳ(𝑡) and 𝑠: pos(𝑡) →
⋃𝑛∈ℕ({0, …, 𝑛} → 𝑃ℳ) such that 𝑠(𝜌) ∈ run𝛥(𝑟(𝜌),𝑡(𝜌))(𝑟(𝜌1)…𝑟(𝜌 rk(𝑡|𝜌))) for every 𝜌 ∈
pos(𝑡). For (𝑡, 𝑒) ∈ ex-runℳ we say that 𝑒 is an extended run of ℳ on 𝑡. Note that ex-runℳ(𝑡)
is a relation for every 𝑡 ∈ U𝛴.

Definition 7.1.7 (ex-run semantics of wuta). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. The
weighted tree language of ℳ (by ex-run semantics), denoted by ⟦ℳ⟧ex-run, is defined by

⟦ℳ⟧ex-run : U𝛴 → ℛ, 𝑡 ↦ ∑
(𝑟,𝑠)∈ex-runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧′
ex-run(𝑡, (𝑟, 𝑠))

wuta

size of wuta (size)

runs of wuta (run)

extended runs (ex-run)
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where

⟦ℳ⟧′
ex-run : ex-runℳ → ℛ,

(𝑡, (𝑟, 𝑠)) ↦ ∏
𝜌∈pos(𝑡)

𝐽𝜌(𝑠(𝜌)(0)) ⋅ ⟦𝒩𝜌⟧′
run(𝑟(𝜌1)…𝑟(𝜌𝑘𝜌), 𝑠(𝜌)) ⋅ 𝐹𝜌(𝑠(𝜌)(𝑘𝜌))

where 𝒩𝜌 = (𝑃𝜌, 𝑄, 𝐽𝜌, 𝛱𝜌, 𝐹𝜌) = 𝛥(𝑟(𝜌), 𝑡(𝜌)) and 𝑘𝜌 = rk(𝑡|𝜌) for every 𝜌 ∈ pos(𝑡).

For every wuta ℳ we have that ⟦ℳ⟧run = ⟦ℳ⟧ex-run and for every (𝑡, 𝑟) ∈ runℳ that

⟦ℳ⟧′
run(𝑡, 𝑟) = ∑

𝑠∈ex-runℳ(𝑡)(𝑟)
⟦ℳ⟧′

ex-run(𝑡, (𝑟, 𝑠)).

A similar result was stated by Droste and Vogler [DV11, Definition 6.7 and Observation 6.8].
Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. The wuta ℳ is called unified if the wsas in the image

of 𝛥 only differ in the initial weights or do not differ at all. We unify ℳ by constructing the
unified wuta ℳ′ = (𝑄, 𝛴, 𝐼, 𝛥′) by constructing the disjoint union of all the wsas in ℳ and
replacing every wsa by this union with appropriately adapted initial weights, i.e., 𝛥′(𝑞, 𝜎) =
(𝑃 ′, 𝑄, 𝐼′

𝑞,𝜎, 𝛱′, 𝐹 ′) where

• (𝑃𝑞,𝜎, 𝑄, 𝐽𝑞,𝜎, 𝛱𝑞,𝜎, 𝐹𝑞,𝜎) = 𝛥(𝑞, 𝜎) for every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴,

• 𝑃 ′ = {𝑝𝑞,𝜎 ∣ 𝑞 ∈ 𝑄, 𝜎 ∈ 𝛴, 𝑝 ∈ 𝑃𝑞,𝜎},

• for every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴 we let

𝐽 ′
𝑞,𝜎(𝑝𝑞,𝜎) = 𝐽𝑞,𝜎(𝑝),

𝛱′(𝑝𝑞,𝜎, 𝑞, 𝑝′
𝑞,𝜎) = 𝛱𝑞,𝜎(𝑝, 𝑞, 𝑝′),

𝐹 ′(𝑝𝑞,𝜎) = 𝐹𝑞,𝜎(𝑝),

for every 𝑞 ∈ 𝑄 and 𝑝, 𝑝′ ∈ 𝑃𝑞,𝜎, and every other value of 𝐽 ′
𝑞,𝜎, 𝛱′, and 𝐹 ′ is 0.

Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a unified wuta. Since all wsas in ℳ have the same transition
weights and the same final weights, an implementation of unified wuta could store these
weights only once for all wsas. Therefore we define the unified size of ℳ by usize(ℳ) =
|supp(𝐼)|+|supp(𝛱)|+|supp(𝐹)|+∑𝑞∈𝑄,𝜎∈𝛴|supp(𝐽𝑞,𝜎)|where𝛱 and𝐹 represent the tran-
sition and final weights of every wsa inℳ and 𝐽𝑞,𝜎 represents the initial weights of𝛥(𝑞, 𝜎) for
every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴. Analogously, we define the unified number of states of ℳ as |𝑄|+|𝑃 |
where 𝑃 is the set of states of every wsa in ℳ.

Notational Remarks In the following, analogously to wtas, we will drop any indices and
primes from the semantic brackets ⟦⋅⟧ for wstas, wsas, and wutas. It will always be clear from
the context, which semantics is meant.

unified wuta

unified size (usize)
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Figure 7.4.: Left-branching binarization of a tree and the original tree including corresponding
runs of left-related wsta and wuta.

7.2. Relating WSTAs and WUTAs via Binarizations

In this section we present three different binarization strategies. We formalize the binarization
strategies by surjective mappings ℎ: 𝕋𝛤 → U𝛴 where 𝛴 is an alphabet and 𝛤 is a sorted
alphabet with the maximum rank of a symbol being 2. In fact, such a mapping ℎ will be a
homomorphism between two many-sorted algebras. We binarize a tree 𝑡 ∈ U𝛴 by applying
the inverse ofℎ. Note that theremight be several different binarizations for 𝑡 ifℎ is not injective.

We show that wstas together with any of the presented binarizations and wutas are equally
powerful; formally: for each presented binarization ℎ we have that for every wuta ℳ there is
a wsta ℳ′ and vice versa such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧), i.e., ⟦ℳ⟧(𝑡) = ∑𝑡′∈ℎ−1(𝑡)⟦ℳ

′⟧(𝑡′) for
every 𝑡 ∈ 𝕋𝛴 (Corollaries 7.2.2 and 7.2.4 and Theorem 7.2.9).

7.2.1. Left-Branching Binarization

Our first binarization is inspired by the left binarization of Matsuzaki, Miyao, and Tsujii
[MMT05, Figure 6]. It is similar to first-child-next-sibling encoding [Com+07, Section 8.3.1]. It
transforms an unranked branch into a sequence of branches growing rightwards (cf. Figure 7.4).

Let 𝛴 be an alphabet and let 𝑆 = {T,H} be a set of sorts. Intuitively, T is the sort for trees
and H is the sort for hedges (sequences of trees). Based on 𝛴 and assuming Cons,Null ∉ 𝛴,
we define the (𝑆 × 𝑆∗)-sorted alphabet 𝛤 by 𝛤 (T,H) = 𝛴, 𝛤 (H,TH) = {Cons}, 𝛤 (H,𝜀) = {Null},
and all other family members are empty. We call 𝛤 the left-branching alphabet (for 𝛴).

We now use 𝛤 as a signature for many-sorted algebras. There is a unique homomorphism
ℎ from the 𝛤-term-algebra into the 𝑆-sorted algebra ((𝐴(𝑠) ∣ 𝑠 ∈ 𝑆), (𝜃𝜎 ∣ 𝜎 ∈ 𝛤)) where

left-branching alphabet
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𝐴(T) = U𝛴, 𝐴(H) = (U𝛴)∗,

∀𝜎 ∈ 𝛴: 𝜃𝜎(𝑡1…𝑡𝑘) = 𝜎(𝑡1, …, 𝑡𝑘),
𝜃Cons(𝑡0, 𝑡1…𝑡𝑘) = 𝑡0𝑡1…𝑡𝑘,

𝜃Null() = 𝜀.

We call ℎ the left-collecting homomorphism (for 𝛴). Figure 7.4 (ignoring the states for now)
illustrates ℎ. Note that ℎ is a bijection, where ℎ(𝑡′)(𝜌) = 𝑡′(12𝜌1−11⋯12𝜌𝑛−11) for every
𝑡′ ∈ 𝕋(T)

𝛤 and 𝜌 = 𝜌1⋯𝜌𝑛 ∈ pos(ℎ(𝑡′)).
Now let ℳ′ = (𝑄′, 𝛤 , 𝐼′, 𝛥′) be a ℛ-𝑆-wsta and ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. We say

that ℳ and ℳ′ are left-related if
• 𝐼′(𝑝) = 0 for every 𝑝 ∈ 𝑄′(H), i.e., ℳ′ is T-rooted,
• 𝑄 = 𝑄′(T),
• 𝐼(𝑞) = 𝐼′(𝑞) for every 𝑞 ∈ 𝑄′(T), and
• for every 𝑞0 ∈ 𝑄 and 𝜎 ∈ 𝛴 we have 𝛥(𝑞0, 𝜎) = (𝑄′(H), 𝑄′(T), 𝐽𝑞0,𝜎, 𝛱, 𝐹) where

𝐽𝑞0,𝜎(𝑝) = 𝛥′(𝜎)(𝑞0, 𝑝),

𝛱(𝑝, 𝑞, 𝑝′) = 𝛥′(Cons)(𝑝, 𝑞, 𝑝′), and
𝐹(𝑝) = 𝛥′(Null)(𝑝)

for every 𝑞 ∈ 𝑄′(T) and 𝑝, 𝑝′ ∈ 𝑄′(H).
Assume that ℳ and ℳ′ are left-related. In that case, ℳ is unified. It is easy to see that the
unified number of states of ℳ equals the number of states of ℳ′ and usize(ℳ) = size(ℳ′).

Theorem 7.2.1. Let 𝛴 be an alphabet, 𝛤 the left-branching alphabet for 𝛴, and ℎ the left-
collecting homomorphism for 𝛴. Let ℳ be a wuta with terminal alphabet 𝛴 and let ℳ′ be a
wsta with terminal alphabet 𝛤. If ℳ and ℳ′ are left-related, then ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

Recall that ℎ(⟦ℳ′⟧)(𝑡) = ∑𝑡′∈ℎ−1(𝑡)⟦ℳ
′⟧(𝑡′) for every 𝑡 ∈ U𝛴. Hence, since ℎ is a bijection,

the equation in the theorem is equivalent to ⟦ℳ′⟧(𝑡′) = ⟦ℳ⟧(ℎ(𝑡′)) for every 𝑡′ ∈ 𝕋𝛤.

Proof. Assume that ℳ and ℳ′ are left-related. Figure 7.4 shows an example tree and its
image under ℎ. Moreover it shows a run and its image under the function 𝑓: runℳ′ →
ex-runℳ that is defined as follows: For every (𝑡′, 𝑟′) ∈ runℳ′ and 𝜌 ∈ pos(ℎ(𝑡)) we let 𝜌′ =
12𝜌1−11⋯12𝜌|𝜌|−11 and define 𝑓(𝑡′, 𝑟′) = (ℎ(𝑡′), (𝑟, 𝑠)) where 𝑟(𝜌) = 𝑟′(𝜌′) and 𝑠(𝜌)(𝑖) =
𝑟′(𝜌′12𝑖) for every 𝑖 ∈ {0, …, rk(𝑡|𝜌)}. Note that 𝑓 is a bijection.
Let (𝑡′, 𝑟′) ∈ runℳ′ and (𝑡, (𝑟, 𝑠)) = 𝑓(𝑡′, 𝑟′). We show that ⟦ℳ⟧(𝑡, (𝑟, 𝑠)) = ⟦ℳ′⟧(𝑡′, 𝑟′)

while letting𝒩𝜌 = (𝑃𝜌, 𝑄, 𝐽𝜌, 𝛱𝜌, 𝐹𝜌) = 𝛥(𝑟(𝜌), 𝑡(𝜌)) and 𝑘𝜌 = rk(𝑡|𝜌) for every 𝜌 ∈ pos(𝑡).

⟦ℳ⟧(𝑡, (𝑟, 𝑠))

= ∏
𝜌∈pos(𝑡)

𝐽𝜌(𝑠(𝜌)(0)) ⋅ ⟦𝒩𝜌⟧(𝑟(𝜌1)…𝑟(𝜌𝑘𝜌), 𝑠(𝜌)) ⋅ 𝐹𝜌(𝑠(𝜌)(𝑘𝜌)) (by Definition 7.1.7)

= ∏
𝜌∈pos(𝑡)

𝐽𝜌(𝑠(𝜌)(0)) ⋅ ( ∏
𝑖∈[𝑘𝜌]

𝛱𝜌(𝑠(𝜌)(𝑖 − 1), 𝑟(𝜌𝑖), 𝑠(𝜌)(𝑖))) ⋅ 𝐹𝜌(𝑠(𝜌)(𝑘𝜌))
(by Definition 7.1.4)

left-collecting hom.

left-related
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= ∏
𝜌∈pos(𝑡)

𝛥′(𝑡(𝜌))(𝑟(𝜌), 𝑠(𝜌)(0)) ⋅ ( ∏
𝑖∈[𝑘𝜌]

𝛥′(Cons)(𝑠(𝜌)(𝑖 − 1), 𝑟(𝜌𝑖), 𝑠(𝜌)(𝑖)))

⋅ 𝛥′(Null)(𝑠(𝜌)(𝑘𝜌)) (by definition of left-related)

= ∏
𝜌∈pos(𝑡), 𝜌′=12𝜌1−11⋯12𝜌|𝜌|−11

𝛥′(𝑡′(𝜌′))(𝑟′(𝜌′), 𝑟′(𝜌′1))

⋅ ( ∏
𝑖∈[𝑘𝜌]

𝛥′(𝑡′(𝜌′12𝑖−1))(𝑟′(𝜌′12𝑖−1), 𝑟′(𝜌′12𝑖−11), 𝑟′(𝜌′12𝑖)))

⋅ 𝛥′(𝑡′(𝜌′12𝑘𝜌))(𝑟′(𝜌′12𝑘𝜌)) (by definition of ℎ and 𝑓)

= ∏
𝜌′∈pos(𝑡′)

𝛥′(𝑡′(𝜌′))(𝑟′(𝜌′), 𝑟′(𝜌′1), …, 𝑟′(𝜌′ rk(𝑡′|𝜌′)))
(by commutativity of ⋅ and definition of ℎ)

= ⟦ℳ′⟧(𝑡′, 𝑟′) (by Definition 7.1.2)

Since by definition of left-related the root weights 𝐼 and 𝐼′ are essentially the same, this im-
mediately implies that ⟦ℳ⟧(𝑡) = ⟦ℳ′⟧(𝑡′). q.e.d.

Corollary 7.2.2. Let 𝛴 be an alphabet, 𝛤 the left-branching alphabet for 𝛴, and ℎ the left-
collecting homomorphism for 𝛴.

• For every wuta ℳ with terminal alphabet 𝛴,
there is a T-rooted wsta ℳ′ with terminal alphabet 𝛤
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧), and

• for every T-rooted wsta ℳ′ with terminal alphabet 𝛤,
there is a wuta ℳ with terminal alphabet 𝛴
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

Proof. Note that the definition of left-related can be read as a construction of a wuta given a
wsta and vice versa. Also wemay assumew.l.o.g. that the wutaℳ in the second item is unified.
Hence, the corollary follows directly by the definition of left-related andTheorem 7.2.1. q.e.d.

7.2.2. Right-Branching Binarization

Our second binarization is called right-branching binarization. It is based on the right bina-
rization of Matsuzaki, Miyao, and Tsujii [MMT05, Figure 6]. You will note that right-branching
binarization is very similar to left-branching binarization. The differences revolve around the
new symbol Snoc, which replaces the symbol Cons.

Let 𝛴 be an alphabet and let 𝑆 = {T,H} be a set of sorts. Based on 𝛴 and assuming
Snoc,Null ∉ 𝛴, we define the (𝑆 × 𝑆∗)-sorted alphabet 𝛤 by 𝛤 (T,H) = 𝛴, 𝛤 (H,HT) = {Snoc},
𝛤 (H,𝜀) = {Null}, and all other family members are empty. We call 𝛤 the right-branching
alphabet (for 𝛴).

We now use 𝛤 as a signature for many-sorted algebras. There is a unique homomorphism
ℎ from the 𝛤-term-algebra into the 𝑆-sorted algebra ((𝐴(𝑠) ∣ 𝑠 ∈ 𝑆), (𝜃𝜎 ∣ 𝜎 ∈ 𝛤)) where

right-branching alph.
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Figure 7.5.: Right-branching binarization of a tree and the original tree including corresponding
runs of right-related wsta and wuta.

𝐴(T) = U𝛴, 𝐴(H) = (U𝛴)∗,

∀𝜎 ∈ 𝛴: 𝜃𝜎(𝑡1…𝑡𝑘) = 𝜎(𝑡1, …, 𝑡𝑘),
𝜃Snoc(𝑡1…𝑡𝑘, 𝑡𝑘+1) = 𝑡1…𝑡𝑘𝑡𝑘+1,

𝜃Null() = 𝜀.

We call ℎ the right-collecting homomorphism (for 𝛴). Figure 7.5 (ignoring the states for now)
illustrates ℎ. Note that ℎ is a bijection, where ℎ(𝑡′)(𝜌) = 𝑡′(11𝑘0−𝜌12⋯11𝑘𝑛−1−𝜌𝑛2) for every
𝑡′ ∈ 𝕋(T)

𝛤 and 𝜌 = 𝜌1⋯𝜌𝑛 ∈ pos(ℎ(𝑡′)) letting 𝑘𝑖 = rk(ℎ(𝑡′)|𝜌1…𝜌𝑖
) for every 𝑖 ∈ {0, …, 𝑛−1}.

Note that 𝑡′(11𝑘0−𝜌12⋯11𝑘𝑖−1−𝜌𝑖211𝑘𝑖) = Null.
Now let ℳ′ = (𝑄′, 𝛤 , 𝐼′, 𝛥′) be a ℛ-𝑆-wsta and ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be an ℛ-wuta. We say

that ℳ and ℳ′ are right-related if
• 𝐼′(𝑝) = 0 for every 𝑝 ∈ 𝑄′(H), i.e., ℳ′ is T-rooted,
• 𝑄 = 𝑄′(T),
• 𝐼(𝑞) = 𝐼′(𝑞) for every 𝑞 ∈ 𝑄′(T), and
• for every 𝑞0 ∈ 𝑄 and 𝜎 ∈ 𝛴 we have 𝛥(𝑞0, 𝜎) = (𝑄′(H), 𝑄′(T), 𝐽 , 𝛱, 𝐹𝑞0,𝜎) where

𝐽(𝑝) = 𝛥′(Null)(𝑝),
𝛱(𝑝, 𝑞, 𝑝′) = 𝛥′(Snoc)(𝑝′, 𝑞, 𝑝), and

𝐹𝑞0,𝜎(𝑝) = 𝛥′(𝜎)(𝑞0, 𝑝)

for every 𝑞 ∈ 𝑄′(T) and 𝑝, 𝑝′ ∈ 𝑄′(H).

right-collecting hom.
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Assume that ℳ and ℳ′ are right-related. In that case, the wsas in the image of 𝛥 may only
differ in the final weights, or, in other words, then reversing all wsas in ℳ results in a unified
wuta. Let ℳ be the wuta where every wsa in ℳ is reversed. It is easy to see that the unified
number of states of ℳ equals the number of states of ℳ′ and usize(ℳ) = size(ℳ′).

Analogous to Theorem 7.2.1 we have the following theorem.

Theorem 7.2.3. Let 𝛴 be an alphabet, 𝛤 the right-branching alphabet for 𝛴, and ℎ the right-
collecting homomorphism for 𝛴. Let ℳ be a wuta with terminal alphabet 𝛴 and let ℳ′ be a
wsta with terminal alphabet 𝛤. If ℳ and ℳ′ are right-related, then ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

Since ℎ is a bijection, the equation in the theorem is equivalent to ⟦ℳ′⟧(𝑡) = ⟦ℳ⟧(ℎ(𝑡)) for
every 𝑡 ∈ 𝕋𝛤.

Proof. The proof is analogous to the proof of Theorem 7.2.1. Figure 7.5 depicts a run and its
image under the function 𝑓: runℳ′ → ex-runℳ, which is needed for the proof. q.e.d.

Corollary 7.2.4. Let 𝛴 be an alphabet, 𝛤 the right-branching alphabet for 𝛴, and ℎ the right-
collecting homomorphism for 𝛴.

• For every wuta ℳ with terminal alphabet 𝛴,
there is a T-rooted wsta ℳ′ with terminal alphabet 𝛤
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧), and

• for every T-rooted wsta ℳ′ with terminal alphabet 𝛤,
there is a wuta ℳ with terminal alphabet 𝛴
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

Proof. Analogous to the proof of Corollary 7.2.2. q.e.d.

7.2.3. Mixed Binarization

We now have a look at a binarization where the direction of growth may be flipped at arbitrary
positions from rightwards to leftwards; cf. center-parent and center-head binarization of
Matsuzaki, Miyao, and Tsujii [MMT05, Figure 6]. For this purpose, let 𝑆 = {T,H,H}. Intu-
itively, T is the sort for trees, and H and H are sorts for hedges (sequences of trees). We distin-
guish two sorts for hedges because later we define operations that add elements to hedges, and
for hedges of sort H we only add elements at the left end while for hedges of sort H we only
add elements at the right end. Based on 𝛴 and assuming Flip,Cons,Null, Snoc,Null ∉ 𝛴, we
define the (𝑆 × 𝑆∗)-sorted alphabet 𝛤 by

𝛤 (T,H) = 𝛴, 𝛤 (H,HT) = {Flip},
𝛤 (H,𝜀) = {Null}, 𝛤 (H,TH) = {Cons},
𝛤 (H,𝜀) = {Null}, 𝛤 (H,HT) = {Snoc},

and all other family members are empty. We call 𝛤 themixed-branching alphabet (for 𝛴). There
is a unique homomorphism ℎ from the 𝛤-term-algebra into the 𝑆-sorted algebra ((𝐴(𝑠) ∣ 𝑠 ∈

mixed-branching alph.
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𝜎
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𝑝3
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⟼

𝑓

𝜎
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𝑝1 𝑝2 𝑞2,𝑝1

𝑝3 𝑞3,𝑝1

Figure 7.6.: Undoing a mixed binarization via Construction 7.2.8. The left tree is one possible
mixed binarization of the right tree. The extended run on the right tree is con-
structed from the depicted run on the left tree. The arrow in the left tree indicates
the processing order of the constructed wuta. Note that the arrow touches 𝑝1 twice.

𝑆), (𝜃𝜎 ∣ 𝜎 ∈ 𝛤)) where 2 𝐴(T) = U𝛴, 𝐴(H) = 𝐴(H) = (U𝛴)∗, and

∀𝜎 ∈ 𝛴: 𝜃𝜎(𝑡1…𝑡𝑘) = 𝜎(𝑡1, …, 𝑡𝑘), 𝜃Flip(𝑡1…𝑡𝑘, 𝑡𝑘+1) = 𝑡1…𝑡𝑘𝑡𝑘+1,
𝜃Null() = 𝜀, 𝜃Cons(𝑡0, 𝑡1…𝑡𝑘) = 𝑡0𝑡1…𝑡𝑘,
𝜃Null() = 𝜀. 𝜃Snoc(𝑡1…𝑡𝑘, 𝑡𝑘+1) = 𝑡1…𝑡𝑘𝑡𝑘+1.

We call ℎ the mixed-collecting homomorphism (for 𝛴). Unfortunately, this homomorphism is
just surjective, but not bijective. That means, there may be several possible binarizations of
an unranked tree. Given a wsta ℳ′ we will construct a wuta ℳ, such that the weight of an
unranked tree 𝑡 under ℳ is the sum of weights of all binarizations ℎ−1(𝑡) under ℳ′.
Figure 7.6 shows an unranked node with the three subtrees 𝑡1, 𝑡2, 𝑡3 on the right-hand side

and one possible binarization with the binarized subtrees 𝑡′
1, 𝑡′

2, 𝑡′
3 on the left-hand side. Note

that the rightmost subtree 𝑡′
3 is attached to the node labeled Flip, yet this node is located in the

middle of the tree. Therefore, if we follow the path from the root to the leaf labeled Null, we
find 𝑡′

1, 𝑡′
3, and 𝑡′

2 in this order. For the indicated run, we find the states in the order 𝑝0, 𝑝1, 𝑝3,
𝑝2.
Conversely, in the unranked case we find the subtrees in the order 𝑡1, 𝑡2, 𝑡3. This is indicated

by the arrow in the left tree of Figure 7.6. Therefore, in a run of a wsa from the constructed
wuta, we have to pass along the information that we visited the state 𝑝1 because we need it at
the rightmost subtree 𝑡3. Additionally, since each transition of the wsa deals with one subtree,
but the Null node has no subtrees, we have to guess a child and pass on this guess in the state.
The constructed run is depicted in the right tree of Figure 7.6.

2 | By definition, the carrier sets of a many-sorted algebra must be disjoint; however, we violate this condition for
𝐴(H) and 𝐴(H). This could be fixed by defining, e.g., 𝐴(H) = {H} × (U𝛴)∗ and 𝐴(H) = {H} × (U𝛴)∗. However,
to ease the notation we adhere to 𝐴(H) = 𝐴(H) = (U𝛴)∗. It will always clear from the context from which
carrier an element comes from.

mixed-collecting hom.
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7. Binarization

Figure 7.7.: Sketch of a 𝑃 -trapping wsa where 𝑃 consists of the states in the dashed rounded
rectangle. States are depicted by circles and non-zero weighted transitions are de-
picted by arrows.

In this section we investigate a construction (Construction 7.2.8) that transforms a wsta over
a mixed-branching alphabet into a wuta following the intuition of Figure 7.6. In order to make
the final construction more manageable, we start with the investigation of wsas of a special
form.

Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be a wsa and 𝑃 ⊆ 𝑃 a set. The wsa 𝒩 is called 𝑃 -trapping if
𝐽( ̄𝑝) = 0 for every ̄𝑝 ∈ 𝑃 and 𝛱( ̄𝑝, 𝜎, 𝑝) = 0 for every ̄𝑝 ∈ 𝑃 , 𝜎 ∈ 𝛴, and 𝑝 ∈ 𝑃 ∖ 𝑃 .
Figure 7.7 sketches an example of a 𝑃 -trapping wsa. It is easy to see that, if 𝒩 is 𝑃 -trapping,
then for every (𝑤, 𝑟) ∈ run𝒩 and 𝑖, 𝑗 ∈ {0, …, |𝑤|} such that 𝑟(𝑖) ∈ 𝑃 and 𝑟(𝑗) ∉ 𝑃 we
have ⟦𝒩⟧(𝑤, 𝑟) = 0. In other words: As soon as a 𝑃 -trapping wsa enters a state from 𝑃 , it is
“trapped in 𝑃”, i.e., subsequently it may only enter states from 𝑃 , otherwise the weight of the
run is 0.

Let 𝒩 be a 𝑃 -trapping wsa and (𝑤, 𝑟) ∈ run𝒩. The run 𝑟 is called 𝑃 -trapped if there is an
ℓ ∈ [|𝑤| + 1] such that 𝑟(0), …, 𝑟(ℓ − 1) ∈ 𝑃 ∖ 𝑃 and 𝑟(ℓ), …, 𝑟(|𝑤|) ∈ 𝑃 ; we then call ℓ
the 𝑃 -trap position in 𝑟. Note that ℓ = |𝑤| + 1 if no state in 𝑟 is from 𝑃 . Also note that
⟦𝒩⟧(𝑤, 𝑟) = 0 if 𝑟 is not 𝑃 -trapped.

In the following construction, given a𝑃 -trapping wsa, we construct a wsa where the trapped
part of every run of the original wsa is reversed.

Construction 7.2.5. Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be a 𝑃 -trapping wsa. The 𝑃 -reversal of 𝒩 is
the wsa 𝒩′ = (𝑃 ′, 𝛴, 𝐽 ′, 𝛱′, 𝐹 ′) where

• 𝑃 ′ = (𝑃 ∖ 𝑃) ∪ 𝑃 ′ where 𝑃 ′ = { ̄𝑝𝜎,𝑠 ∣ ̄𝑝 ∈ 𝑃, 𝜎 ∈ 𝛴, 𝑠 ∈ 𝑃 ∖ 𝑃}, and

• for every 𝑝, 𝑟, 𝑠 ∈ 𝑃 ∖ 𝑃 , ̄𝑝, ̄𝑟 ∈ 𝑃 , and 𝜎, 𝜎′ ∈ 𝛴 we let

𝐽 ′(𝑝) = 𝐽(𝑝), 𝛱′(𝑝, 𝜎, 𝑟) = 𝛱(𝑝, 𝜎, 𝑟), 𝐹 ′( ̄𝑝𝜎,𝑠) = 𝛱(𝑠, 𝜎, ̄𝑝),
𝛱′(𝑠, 𝜎, ̄𝑟𝜎,𝑠) = 𝐹( ̄𝑟), 𝐹 ′(𝑝) = 𝐹(𝑝),

𝛱′( ̄𝑝𝜎′,𝑠, 𝜎, ̄𝑟𝜎,𝑠) = 𝛱( ̄𝑟, 𝜎′, ̄𝑝),

and every other weight is 0.

We continue using the variables from the previous construction. It is easy to see that the
number of states of 𝒩′ is in 𝒪(|𝑃 |2 ⋅ |𝛴|) and that size(𝒩′) ∈ 𝒪(|𝑃 | ⋅ |𝛴| ⋅ size(𝒩)).

trapping wsa

trapped run

trap position

trap-reversal
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Note that 𝒩′ is 𝑃 ′-trapping. Let run be the largest set such that run ⊆ run𝒩 and every run
in run is 𝑃 -trapped. We define the mapping rev𝑃 : run → run𝒩′ such that for every (𝑤, 𝑟) ∈
run letting 𝑛 = |𝑤| and letting ℓ be the 𝑃 -trap position in 𝑟 we have rev𝑃 (𝑤, 𝑟) = (𝑤′, 𝑟′)
where 𝑟′(0) = 𝑟(0) and

(𝑤′
𝑖, 𝑟′(𝑖)) =

⎧{{
⎨{{⎩

(𝑤𝑖, 𝑟(𝑖)) if 𝑖 < ℓ,
(𝜎 , 𝑝𝜎,𝑝) if 𝑖 ≥ ℓ, where 𝑝 = 𝑟(ℓ + 𝑛 − 𝑖),

𝜎 = 𝑤ℓ+𝑛−𝑖, and
𝑝 = 𝑟(ℓ − 1).

for every 𝑖 ∈ [𝑛]. Note that 𝑤′ = 𝑤1𝑤2…𝑤ℓ−1 𝑤𝑛𝑤𝑛−1…𝑤ℓ. Also note that 𝑟′ is 𝑃 ′-trapped
with 𝑃 ′-trap position ℓ. It is easy to see that rev𝑃 is injective.

Lemma 7.2.6. Let 𝒩 be a 𝑃 -trapping wsa and let 𝒩′ be the 𝑃 -reversal of 𝒩. Then

⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(|𝑤′|))

= {
⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) if there is (𝑤, 𝑟) s.t. (𝑤′, 𝑟′) = rev𝒩(𝑤, 𝑟),
0 otherwise.

for every (𝑤′, 𝑟′) ∈ run𝒩′ where 𝐹 and 𝐹 ′ are the final weights of 𝒩 and 𝒩′, respectively.

Proof. In this proof, we use the variable bindings from the construction of the 𝑃 -reversal (Con-
struction 7.2.5). Also, let 𝑛 = |𝑤′|. For the first case in the equation, let ℓ be the 𝑃 -trap position
in 𝑟′. If ℓ = 𝑛 + 1, then the lemma follows immediately by the definition of 𝑃 -reversal and the
definition of rev𝒩. If ℓ ≤ 𝑛, then we have the following. For 𝑖 ∈ {ℓ, …, 𝑛} we have 𝑟′(𝑖) ∈ 𝑃 ′.
So 𝑟′(𝑖) is of the form 𝑝𝜎,𝑠, which allows us to define the following three notations:

𝑟′(𝑖) = 𝑝, 𝑟′(𝑖)1 = 𝜎, and 𝑟′(𝑖)2 = 𝑠.

Using this notation, we have:

⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(𝑛))

= ( ∏
𝑖∈[𝑛]

𝛱′(𝑟′(𝑖 − 1), 𝑤′
𝑖, 𝑟′(𝑖))) ⋅ 𝐹 ′(𝑟′(𝑛)) (by Definition 7.1.4)

= ( ∏
𝑖∈[ℓ−1]

𝛱(𝑟′(𝑖 − 1), 𝑤′
𝑖, 𝑟′(𝑖))) ⋅ 𝐹(𝑟′(ℓ))

⋅ ( ∏
𝑖∈{ℓ+1,…,𝑛}

𝛱(𝑟′(𝑖), 𝑟′(𝑖 − 1)1, 𝑟′(𝑖 − 1))) ⋅ 𝛱(𝑟′(𝑛)2, 𝑟′(𝑛)1, 𝑟′(𝑛))

(by definition of 𝑃 -reversal)

= ( ∏
𝑖∈[ℓ−1]

𝛱(𝑟(𝑖 − 1), 𝑤𝑖, 𝑟(𝑖))) ⋅ 𝐹(𝑟(𝑛))

⋅ ( ∏
𝑖∈{ℓ+1,…,𝑛}

𝛱(𝑟(ℓ + 𝑛 − 𝑖), 𝑤ℓ+𝑛−𝑖+1, 𝑟(ℓ + 𝑛 − 𝑖 + 1))) ⋅ 𝛱(𝑟(ℓ − 1), 𝑤ℓ, 𝑟(ℓ))

(by definition of rev𝒩)

rev
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= ( ∏
𝑖∈[ℓ−1]

𝛱(𝑟(𝑖 − 1), 𝑤𝑖, 𝑟(𝑖))) ⋅ 𝐹(𝑟(𝑛))

⋅ ( ∏
𝑗∈{𝑛,𝑛−1,…,ℓ+1}

𝛱(𝑟(𝑗 − 1), 𝑤𝑗, 𝑟(𝑗))) ⋅ 𝛱(𝑟(ℓ − 1), 𝑤ℓ, 𝑟(ℓ))

(substituting 𝑖 by ℓ + 1 + 𝑛 − 𝑗 in 2nd ∏)

= ⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) (by commutativity and Definition 7.1.4)

This concludes the first case in the equation. By the definition of rev𝒩, the second case in the
equation applies to (𝑤′, 𝑟′) where

• 𝑟′ is not 𝑃 ′-trapping, or
• 𝑟′ is 𝑃 ′-trapping with 𝑃 ′-trap position ℓ ≤ 𝑛 and there is a position 𝑖 ∈ {ℓ, …, 𝑛} such
that 𝑟′(𝑖)1 ≠ 𝑤′

𝑖 or 𝑟′(𝑖)2 ≠ 𝑟′(ℓ − 1).
In both cases we have ⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(𝑛)) = 0 by definition of 𝑃 -reversal. q.e.d.

Lemma 7.2.7. Let 𝒩 be a 𝑃 -trapping wsa and let 𝒩′ be the 𝑃 -reversal of 𝒩 (Construc-
tion 7.2.5). Then for every 𝑤 ∈ 𝛴∗ we have ∑𝑤∈𝛴∗⟦𝒩⟧(𝑤) = ∑𝑤∈𝛴∗⟦𝒩′⟧(𝑤).

Proof. We use the variable bindings from Construction 7.2.5 (𝑃 -reversal).

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤)

= ∑
(𝑤,𝑟)∈run𝒩

𝐽(𝑟(0)) ⋅ ⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) (by Definition 7.1.4)

= ∑
(𝑤,𝑟)∈run𝒩 :
𝑟 is 𝑃 -trapped

𝐽(𝑟(0)) ⋅ ⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) (⟦𝒩⟧(𝑤, 𝑟) = 0 if 𝑟 not 𝑃 -trapped)

= ∑
(𝑤,𝑟)∈run𝒩 :
𝑟 is 𝑃 -trapped

𝐽(𝑟(0)) ⋅ ⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(|𝑤′|)) where (𝑤′, 𝑟′) = rev𝒩(𝑤, 𝑟)
(by Lemma 7.2.6)

= ∑
(𝑤,𝑟)∈run𝒩 :
𝑟 is 𝑃 -trapped

𝐽 ′(𝑟′(0)) ⋅ ⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(|𝑤′|)) where (𝑤′, 𝑟′) = rev𝒩(𝑤, 𝑟)
(by Construction 7.2.5 and def. of rev)

= ∑
(𝑤′,𝑟′)∈im(rev𝒩)

𝐽 ′(𝑟′(0)) ⋅ ⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(|𝑤′|)) (by injectivity of rev)

= ∑
(𝑤′,𝑟′)∈run𝒩′

𝐽 ′(𝑟′(0)) ⋅ ⟦𝒩′⟧(𝑤′, 𝑟′) ⋅ 𝐹 ′(𝑟′(|𝑤′|)) (by Lemma 7.2.6)

= ∑
𝑤∈𝛴∗

⟦𝒩′⟧(𝑤) (by Definition 7.1.4)

q.e.d.

We now have all the ingredients we need to finally transform a wsta over a mixed-branching
alphabet into a wuta following the idea of Figure 7.6.

Construction 7.2.8. Let 𝛴 be an alphabet, 𝑆 = {T,H,H}, and 𝛤 the mixed-branching al-
phabet for 𝛴. Let ℳ′ = (𝑄′, 𝛤 , 𝐼′, 𝛥′) be a T-rooted ℛ-𝑆-wsta. We construct the ℛ-wuta
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ℳ = (𝑄′(T), 𝛴, 𝐼, 𝛥) where for every 𝑞0 ∈ 𝑄′(T) and 𝜎 ∈ 𝛴 we let 𝐼(𝑞0) = 𝐼 ′(𝑞0) and let
𝛥(𝑞0, 𝜎) be the 𝑄′(H)-reversal of the wsa 𝒩𝑞0,𝜎 = (𝑄′(H) ∪ 𝑄′(H), 𝑄′(T), 𝐽𝑞0,𝜎, 𝛱, 𝐹) where

𝐽𝑞0,𝜎(𝑝) = 𝛥′(𝜎)(𝑞0, 𝑝), 𝛱(𝑝, 𝑞, 𝑟) = 𝛥′(Cons)(𝑝, 𝑞, 𝑟), 𝐹(𝑝) = 𝛥′(Null)(𝑝),

𝛱(𝑝, 𝑞, ̄𝑟) = 𝛥′(Flip)(𝑝, ̄𝑟, 𝑞),
𝐽𝑞0,𝜎( ̄𝑝) = 0, 𝛱( ̄𝑝, 𝑞, ̄𝑟) = 𝛥′(Snoc)( ̄𝑝, ̄𝑟, 𝑞), 𝐹( ̄𝑝) = 𝛥′(Null)( ̄𝑝),

𝛱( ̄𝑝, 𝑞, 𝑟) = 0,

for every 𝑝, 𝑟 ∈ 𝑄′(H), ̄𝑝, ̄𝑟 ∈ 𝑄′(H), and 𝑞 ∈ 𝑄′(T).

Note that𝒩𝑞0,𝜎 in the construction is𝑄′(H)-trapping and by the definition of the𝑄′(H)-reversal
(cf. Construction 7.2.5) we have for every 𝑞0 ∈ 𝑄′(T) and for every 𝜎 ∈ 𝛴 that 𝛥(𝑞0, 𝜎) =
(𝑃 , 𝑄′(T), 𝐽 , 𝛱, 𝐹) where

𝐽(𝑝) = 𝛥′(𝜎)(𝑞0, 𝑝), 𝛱(𝑝, 𝑞, 𝑟) = 𝛥′(Cons)(𝑝, 𝑞, 𝑟), 𝐹( ̄𝑝𝑞,𝑠) = 𝛥′(Flip)(𝑠, ̄𝑝, 𝑞),

𝛱(𝑠, 𝑞, ̄𝑟𝑞,𝑠) = 𝛥′(Null)( ̄𝑟), 𝐹(𝑝) = 𝛥′(Null)(𝑝),

𝛱( ̄𝑝𝑞′,𝑠, 𝑞, ̄𝑟𝑞,𝑠) = 𝛥′(Snoc)( ̄𝑟, ̄𝑝, 𝑞′).

for every 𝑝, 𝑟, 𝑠 ∈ 𝑄′(H), ̄𝑝, ̄𝑟 ∈ 𝑄′(H), and 𝑞, 𝑞′ ∈ 𝑄′(T), and every other weight is 0.
In Construction 7.2.8, with the results for Construction 7.2.5, we have that the number of

states of a single wsa in ℳ is in 𝒪(|𝑄′|3) and its size is in 𝒪(|𝑄′|2 ⋅ size(ℳ′)). Note that ℳ
is unified. Therefore it is easy to see that the unified number of states of ℳ is in 𝒪(|𝑄′|3) and
that usize(ℳ) ∈ 𝒪(|𝑄′|2 ⋅ size(ℳ′)).

Theorem 7.2.9. Let 𝛴 be an alphabet, 𝑆 = {T,H,H}, 𝛤 the mixed-branching alphabet for 𝛴,
and ℎ the mixed-collecting homomorphism for 𝛴.
For every T-rooted ℛ-𝑆-wsta ℳ′ with terminal alphabet 𝛤, there is an ℛ-wuta ℳ with ter-

minal alphabet 𝛴 such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧). The wuta ℳ can be effectively determined by
Construction 7.2.8.

The proof of the theorem is partly very similar to the proofs of Lemmas 7.2.6 and 7.2.7. There-
fore we encourage the reader to read those proofs first.

Proof. Let ℳ′ be a T-rooted ℛ-𝑆-wsta with terminal alphabet 𝛤. We show that the wuta ℳ
constructed by Construction 7.2.8 has the required property.
Let 𝑡′ ∈ 𝕋𝛤 and let 𝑡 = ℎ(𝑡′). We first define the helper function 𝑏𝑡′ : pos(𝑡) → pos(𝑡′),

which maps a position from the unranked tree 𝑡 to the corresponding position in the binarized
tree 𝑡′, i.e., 𝑡′(𝑏𝑡′(𝜌)) = 𝑡(𝜌) for every 𝜌 ∈ pos(𝑡). The function 𝑏𝑡′ is inductively defined. We
define 𝑏𝑡′(𝜀) = 𝜀 and for every 𝜌 ∈ pos(𝑡) and 𝑖 ∈ ℕ≥1 such that 𝜌𝑖 ∈ pos(𝑡) we define
𝑏𝑡′(𝜌𝑖) as follows: Let 𝜌′ = 𝑏𝑡′(𝜌) and let 𝑘 = rk(𝑡|𝜌′). Also, if the subtree 𝑡′|𝜌′1 is of the
form Cons(…, …(…,Cons(…, Flip(…, …)))), then we let ℓ ∈ [𝑘] such that 𝑡′(𝜌′12ℓ−1) = Flip,
otherwise we let ℓ = 𝑘 + 1. We define

𝑏𝑡′(𝜌𝑖) = {
𝜌′12𝑖−11 if 𝑖 < ℓ,
𝜌′12ℓ−11𝑘−𝑖2 if 𝑖 ≥ ℓ.
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We now define the function 𝑓: runℳ′ → ex-runℳ (analogously to the proof of Theo-
rem 7.2.1). Figure 7.6 visualizes this mapping. For every (𝑡′, 𝑟′) ∈ runℳ′ we define 𝑓(𝑡′, 𝑟′) =
(𝑡, (𝑟, 𝑠)) where 𝑡 = ℎ(𝑡′) and (𝑟, 𝑠) ∈ ex-runℳ(𝑡) such that for every 𝜌 ∈ pos(𝑡) letting
𝜌′ = 𝑏𝑡′(𝜌) we have 𝑟(𝜌) = 𝑟′(𝜌′) and letting 𝑘 and ℓ as in the definition of 𝑏𝑡′ above we have
for every 𝑖 ∈ {0, …, 𝑘}

𝑠(𝜌)(𝑖) =

⎧{{
⎨{{⎩

𝑟′(𝜌′12𝑖) if 𝑖 < ℓ,
𝑝𝑞,𝑝 if 𝑖 ≥ ℓ, where 𝑝 = 𝑟′(𝜌′12ℓ−11𝑘−𝑖1),

𝑞 = 𝑟′(𝜌′12ℓ−11𝑘−𝑖2) = 𝑟′(𝑏𝑡′(𝜌𝑖)), and
𝑝 = 𝑟′(𝜌′12ℓ−1).

Note in contrast to ℎ that 𝑓 is injective.
Now we show that ⟦ℳ′⟧(𝑡′, 𝑟′) = ⟦ℳ⟧(𝑓(𝑡′, 𝑟′)) for every (𝑡′, 𝑟′) ∈ runℳ′ . For this

purpose we first look at only a single factor of the big product in the definition of ⟦ℳ⟧′
ex-run (cf.

Definition 7.1.7). Let (𝑡′, 𝑟′) ∈ runℳ′ , let (𝑡, (𝑟, 𝑠)) = 𝑓(𝑡′, 𝑟′), let 𝜌 ∈ pos(𝑡), let 𝜌′ = 𝑏𝑡′(𝜌),
let 𝑘 = rk(𝑡|𝜌), and let 𝒩 = (𝑃 , 𝑄, 𝐽, 𝛱, 𝐹) = 𝛥(𝑟(𝜌), 𝑡(𝜌)). We define

⟦ℳ⟧𝜌(𝑡, (𝑟, 𝑠)) = 𝐽(𝑠(𝜌)(0)) ⋅ ⟦𝒩⟧(𝑟(𝜌1)…𝑟(𝜌𝑘), 𝑠(𝜌)) ⋅ 𝐹(𝑠(𝜌)(𝑘)).

Again, let ℓ be as in the definition of 𝑏𝑡′ . Assume that ℓ ≤ 𝑘, i.e., Flip was used to binarize the
node at position 𝜌 of 𝑡, so we have 𝑡′(𝜌′12ℓ−1) = Flip. For 𝑖 ∈ {ℓ, …, 𝑘} we have that 𝑠(𝜌)(𝑖)
is of the form 𝑝𝑞,𝑝, which allows us to define the following three notations:

𝑠(𝜌)(𝑖) = 𝑝, 𝑠(𝜌)(𝑖)1 = 𝑞, and 𝑠(𝜌)(𝑖)2 = 𝑝.

Using this notation, we can transform ⟦ℳ⟧𝜌(𝑡, (𝑟, 𝑠)) as follows.

⟦ℳ⟧𝜌(𝑡, (𝑟, 𝑠)) = 𝐽(𝑠(𝜌)(0)) ⋅ ⟦𝒩⟧(𝑟(𝜌1)…𝑟(𝜌𝑘), 𝑠(𝜌)) ⋅ 𝐹(𝑠(𝜌)(𝑘))

= 𝐽(𝑠(𝜌)(0)) ⋅ ( ∏
𝑖∈[𝑘]

𝛱(𝑠(𝜌)(𝑖 − 1), 𝑟(𝜌𝑖), 𝑠(𝜌)(𝑖))) ⋅ 𝐹(𝑠(𝜌)(𝑘)) (by Definition 7.1.4)

= 𝛥′(𝑡(𝜌))(𝑟(𝜌), 𝑠(𝜌)(0))

⋅ ( ∏
𝑖∈[ℓ−1]

𝛥′(Cons)(𝑠(𝜌)(𝑖 − 1), 𝑟(𝜌𝑖), 𝑠(𝜌)(𝑖)))

⋅ 𝛥′(Null)(𝑠(𝜌)(ℓ))

⋅ ( ∏
𝑖∈{ℓ+1,…,𝑘}

𝛥′(Snoc)(𝑠(𝜌)(𝑖), 𝑠(𝜌)(𝑖 − 1), 𝑠(𝜌)(𝑖 − 1)1))

⋅ 𝛥′(Flip)(𝑠(𝜌)(𝑘)2, 𝑠(𝜌)(𝑘), 𝑠(𝜌)(𝑘)1)

(by Construction 7.2.8)
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= 𝛥′(𝑡′(𝜌′))(𝑟′(𝜌′), 𝑟′(𝜌′1))

⋅ ( ∏
𝑖∈[ℓ−1]

𝛥′(𝑡′(𝜌′12𝑖−1))(𝑟′(𝜌′12𝑖−1), 𝑟′(𝜌′12𝑖−11), 𝑟′(𝜌′12𝑖)))

⋅ 𝛥′(𝑡′(𝜌′12ℓ−11𝑘−ℓ1))(𝑟′(𝜌′12ℓ−11𝑘−ℓ1))

⋅ ( ∏
𝑖∈{ℓ+1,…,𝑘}

𝛥′(𝑡′(𝜌′12ℓ−11𝑘−𝑖1))(𝑟′(𝜌′12ℓ−11𝑘−𝑖1),

𝑟′(𝜌′12ℓ−11𝑘−𝑖+11), 𝑟′(𝜌′12ℓ−11𝑘−𝑖+12)))

⋅ 𝛥′(𝑡′(𝜌′12ℓ−1))(𝑟′(𝜌′12ℓ−1), 𝑟′(𝜌′12ℓ−11), 𝑟′(𝜌′12ℓ−12))
(by definition of ℎ and 𝑓)

Note that in the last transformation step every transition in the Cons-Flip-Snoc-Null chain
starting at position 𝜌′ in 𝑡′ is accounted exactly once.
If ℓ > 𝑘, then Flip is not involved in the binarization of the node at position 𝜌 in 𝑡 and we

therefore can transform ⟦ℳ⟧𝜌(𝑡, (𝑟, 𝑠)) as in the proof of Theorem 7.2.1 (note that there this
transformation is part of the transformation of ⟦ℳ⟧(𝑡, (𝑟, 𝑠))).
Using the above transformation, we now show that ⟦ℳ⟧(𝑡, (𝑟, 𝑠)) = ⟦ℳ′⟧(𝑡′, 𝑟′):

⟦ℳ⟧(𝑡, (𝑟, 𝑠)) = ∏
𝜌∈pos(𝑡)

⟦ℳ⟧𝜌(𝑡, (𝑟, 𝑠)) (by def. of ⟦ℳ⟧𝜌 and Definition 7.1.7)

= ∏
𝜌′∈pos(𝑡′)

𝛥′(𝑡′(𝜌′))(𝑟′(𝜌′), 𝑟′(𝜌′1), …, 𝑟′(𝜌′ rk(𝑡′|𝜌′)))

(by transformation of ⟦ℳ⟧𝜌, commutativity of ⋅, and definition of ℎ)
= ⟦ℳ′⟧(𝑡′, 𝑟′) (by Definition 7.1.2)

According to our above quantifications, this holds for every (𝑡, (𝑟, 𝑠)) ∈ im(𝑓). For every
(𝑡, 𝑒) ∈ ex-runℳ ∖ im(𝑓) we have by Construction 7.2.8 that ⟦ℳ⟧(𝑡, 𝑒) = 0.
All in all we have

⟦ℳ⟧(𝑡) = ∑
(𝑟,𝑠)∈ex-runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧(𝑡, (𝑟, 𝑠)) (by Definition 7.1.7)

= ∑
(𝑟,𝑠)∈ex-runℳ(𝑡)∩im(𝑓)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧(𝑡, (𝑟, 𝑠)) (⟦ℳ⟧(𝑡, 𝑒) = 0 if (𝑡, 𝑒) ∉ im(𝑓))

= ∑
(𝑟,𝑠)∈ex-runℳ(𝑡)∩im(𝑓)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ′⟧(𝑡′, 𝑟′) where (𝑡′, 𝑟′) = 𝑓−1(𝑡, (𝑟, 𝑠))
(by above transformation and injectivity of 𝑓)

= ∑
(𝑟,𝑠)∈ex-runℳ(𝑡)∩im(𝑓)

𝐼′(𝑟′(𝜀)) ⋅ ⟦ℳ′⟧(𝑡′, 𝑟′) where (𝑡′, 𝑟′) = 𝑓−1(𝑡, (𝑟, 𝑠))
(by Construction 7.2.8 and def. of 𝑓)

= ∑
(𝑡′,𝑟′)∈runℳ′ :

ℎ(𝑡′)=𝑡

𝐼′(𝑟′(𝜀)) ⋅ ⟦ℳ′⟧(𝑡′, 𝑟′) (by injectivity of 𝑓)

= ∑
𝑡′∈ℎ−1(𝑡)

⟦ℳ′⟧(𝑡′). (by Definition 7.1.2)

q.e.d.
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For the inverse direction of Theorem 7.2.9, i.e., constructing a wsta given a wuta, note that
trees resulting from left-branching and right-branching binarization are also valid binarizations
w.r.t. mixed binarization (modulo different node labels). Therefore the results from the previous
sections can be applied.

7.3. The Probabilistic Case

In this section we revisit the results from the previous section, but this time we only consider
the probability semiring and demand that the automata are probabilistic. A probabilistic au-
tomaton can be viewed as a device that generates strings or trees by randomly choosing the
transitions that shall be applied. For that purpose the weights of applicable transitions must
always sum up to 1 and also the weights of all strings or trees must sum up to 1.

For every binarization strategy ℎ from the previous section, we show that we can construct
a probabilistic ℙ-wuta ℳ given a probabilistic ℙ-wsta ℳ′ such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧) and
vice versa. The challenge is to ensure the semantic property that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧) while also
ensuring the syntactic property that certain transition weights sum up to 1.

We start by further investigating wsas (Sections 7.3.1 and 7.3.2) to lay the groundwork for
the results regarding wstas and wutas (Theorems 7.3.18, 7.3.22 and 7.3.24 in Section 7.3.3).

7.3.1. Additional Preliminaries About WSAs

We introduce some additional definitions and results for wsas that help us in the later sections.

Properties ofWSAs Note that the definitions and results of this paragraph are not restricted
to the probability semiring.

Let ℛ be a zero-divisor free, commutative semiring, 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) an ℛ-wsa, and
𝑝 ∈ 𝑃.

• The state 𝑝 is accessible (in 𝒩) if there is (𝑤, 𝑟) ∈ run𝒩 such that 𝑟(|𝑤|) = 𝑝 and
𝐽(𝑟(0)) ⋅ ⟦𝒩⟧(𝑤, 𝑟) ≠ 0.

• The state 𝑝 is terminating (in 𝒩) if there is (𝑤, 𝑟) ∈ run𝒩 such that 𝑟(0) = 𝑝 and
⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) ≠ 0.

• The ℛ-wsa 𝒩 is called accessible or terminating if every state of 𝒩 is accessible or ter-
minating, respectively.

• The ℛ-wsa 𝒩 is called reduced if 𝒩 is accessible and terminating. In other words: 𝒩 is
reduced if for every state 𝑝 ∈ 𝑃 there are (𝑤, 𝑟) ∈ run𝒩 and 𝑖 ∈ {0, …, |𝑤|} such that
𝑟(𝑖) = 𝑝 and 𝐽(𝑟(0)) ⋅ ⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) ≠ 0.

Construction 7.3.1. Let ℛ be a zero-divisor free commutative semiring. Additionally let
𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an ℛ-wsa. We say we reduce 𝒩 by constructing the ℛ-wsa 𝒩′ =

accessible state

terminating state

accessible wsa
terminating wsa

reduced
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(𝑃 ′, 𝛴, 𝐽 ′, 𝛱′, 𝐹 ′) where3

𝑃 ′ = {𝑝 ∈ 𝑃 ∣ ∃(𝑤, 𝑟) ∈ run𝒩 : 𝐽(𝑟(0)) ⋅ ⟦𝒩⟧(𝑤, 𝑟) ⋅ 𝐹 (𝑟(|𝑤|)) ≠ 0
∧ ∃𝑖 ∈ {0, …, |𝑤|} : 𝑟(𝑖) = 𝑝},

and 𝐽 ′(𝑝) = 𝐽(𝑝), 𝛱′(𝑝, 𝜎, 𝑝′) = 𝛱(𝑝, 𝜎, 𝑝′), and 𝐹 ′(𝑝) = 𝐹(𝑝) for every 𝑝, 𝑝′ ∈ 𝑃 ′ and
𝜎 ∈ 𝛴.

Observation 7.3.2. For the wsa 𝒩 and 𝒩′ from Construction 7.3.1, we have that
• 𝒩′ is reduced,
• run𝒩 ⊇ run𝒩′ ,
• ⟦𝒩⟧(𝑤) = ⟦𝒩′⟧(𝑤) for every 𝑤 ∈ 𝛴∗, and
• ⟦𝒩⟧(𝑤, 𝑟) = ⟦𝒩′⟧(𝑤, 𝑟) for every (𝑤, 𝑟) ∈ run𝒩′ .

Properties ofWSAs over the Probability Semiring From now on we will concentrate on
the probability semiring.
A ℙ-wsa 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) is called

• out-probabilistic if for every 𝑝 ∈ 𝑃 we have 𝐹(𝑝) + ∑𝜎∈𝛴,𝑝′∈𝑃 𝛱(𝑝, 𝜎, 𝑝′) = 1,

• semi-probabilistic if it is out-probabilistic and ∑𝑝∈𝑃 𝐽(𝑝) = 1,

• convergent if ∑𝑤∈𝛴∗⟦𝒩⟧(𝑤) is finite,

• consistent if this sum is 1, and

• probabilistic if it is semi-probabilistic and consistent.

These notions are strongly influenced by Dupont, Denis, and Esposito [DDE05]. We now take
over some results from these authors and generalize some of them slightly.

Lemma 7.3.3 (Dupont, Denis, and Esposito [DDE05, Corollary 1]). Let 𝒩 be a ℙ-wsa. If 𝒩 is
semi-probabilistic, then

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) ≤ 1.

Lemma 7.3.4. Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be a ℙ-wsa. If 𝒩 is out-probabilistic, then

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) ≤ ∑
𝑝∈𝑃

𝐽(𝑝).

Proof. The lemma obviously holds if ∑𝑝∈𝑃 𝐽(𝑝) = 0. Otherwise, let 𝒩′ = (𝑃 , 𝛴, 𝐽 ′, 𝛱, 𝐹)
where 𝐽 ′(𝑝) = 𝐽(𝑝)/ ∑𝑝∈𝑃 𝐽(𝑝). By the definition of run semantics (Definition 7.1.4), we
have

∑
𝑤∈𝛴∗

⟦𝒩′⟧(𝑤) = ∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) / ∑
𝑝∈𝑃

𝐽(𝑝).

Hence, by Lemma 7.3.3, the lemma follows immediately. q.e.d.
3 | Sinceℛ is zero-divisor free, the set𝑃 ′ can easily be constructed by a reachability analysis in a graph constructed

from the non-zero weighted transitions of 𝒩.

out-probabilistic

semi-probabilistic

convergent

consistent

probabilistic
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Lemma 7.3.5 (Dupont, Denis, and Esposito [DDE05, Proposition 2]). Let 𝒩 be a ℙ-wsa that
is semi-probabilistic. Every accessible state of 𝒩 is terminating if and only if 𝒩 is consistent.

This implies that every semi-probabilistic and terminating or even reduced ℙ-wsa is consistent
and therefore probabilistic.

Lemma 7.3.6. Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an out-probabilistic ℙ-wsa. Every accessible state
of 𝒩 is terminating if and only if 𝒩 is convergent and

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) = ∑
𝑝∈𝑃

𝐽(𝑝).

Proof. The lemma obviously holds if ∑𝑝∈𝑃 𝐽(𝑝) = 0 because then there is no accessible state.
Otherwise, let 𝒩′ = (𝑃 , 𝛴, 𝐽 ′, 𝛱, 𝐹) where 𝐽 ′(𝑝) = 𝐽(𝑝)/ ∑𝑝∈𝑃 𝐽(𝑝). Note that 𝒩′ is
semi-probabilistic. Also note that every accessible state of 𝒩′ is terminating if and only if this
is the case for 𝒩. By the definition of run semantics (Definition 7.1.4), we have

∑
𝑤∈𝛴∗

⟦𝒩′⟧(𝑤) = ∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) / ∑
𝑝∈𝑃

𝐽(𝑝).

Hence, by Lemma 7.3.5, 𝒩′ is consistent if and only if ∑𝑤∈𝛴∗⟦𝒩⟧(𝑤) = ∑𝑝∈𝑃 𝐽(𝑝). q.e.d.

Lemma 7.3.7. Let 𝒩 be a ℙ-wsa. If 𝒩 is out-probabilistic and terminating, then the ℙ-wsa
obtained by reducing 𝒩 (Construction 7.3.1) is also out-probabilistic and terminating.

Proof. Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an out-probabilistic and terminating ℙ-wsa and let 𝒩′ =
(𝑃 ′, 𝛴, 𝐽 ′, 𝛱′, 𝐹 ′) be the ℙ-wsa obtained by reducing 𝒩. By Construction 7.3.1, 𝒩′ is termi-
nating since𝒩 is terminating. We now prove by contradiction that𝒩′ is also out-probabilistic.
Assume that 𝒩′ is not out-probabilistic. That means there is a 𝑝 ∈ 𝑃 ′ such that 𝐹 ′(𝑝) +
∑𝜎∈𝛴,𝑝′∈𝑃 ′ 𝛱′(𝑝, 𝜎, 𝑝′) ≠ 1. Then, since 𝒩 is out-probabilistic, there is a ̂𝑝 ∈ 𝑃 ∖ 𝑃 ′ such
that 𝛱(𝑝, 𝜎, ̂𝑝) ≠ 0. Since 𝒩′ is reduced, 𝑝 is accessible in 𝒩′ and therefore also in 𝒩. Since
𝛱(𝑝, 𝜎, ̂𝑝) ≠ 0, also ̂𝑝 is accessible in 𝒩. Since 𝒩 is terminating, ̂𝑝 is also terminating in 𝒩.
So ̂𝑝 is accessible and terminating, hence ̂𝑝 ∈ 𝑃 ′, which is a contradiction. q.e.d.

Defining WSAs Using Matrices For our following considerations we use an alternative
view on wsas using matrices. This view allows us to use results about matrices for our proofs.
Besides, we can formulate our results more elegantly.

We first define some basic notions about matrices. Let ℛ be a set, and let 𝐼 and 𝐽 be finite,
non-empty sets. An 𝐼 × 𝐽 matrix (over ℛ) is a mapping from 𝐼 × 𝐽 → ℛ. Let 𝐴 be an 𝐼 × 𝐽
matrix. The sets 𝐼 and 𝐽 are called the index sets of 𝐴. The elements of im(𝐴) are called entries.
Assuming 𝐼 and 𝐽 are totally ordered, 𝐴 can be viewed as a table with |𝐼| rows and |𝐽 | columns
containing values from ℛ. Instead of 𝐴(𝑖, 𝑗) we write (𝐴)𝑖,𝑗 for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽; if 𝐼 or 𝐽
is a singleton, then we just write (𝐴)𝑗 or (𝐴)𝑖, respectively, and we say that 𝐴 is a 1 × 𝐽 or
𝐼 × 1 matrix, respectively. If both, 𝐼 and 𝐽, are singletons, then we identify 𝐴 with its single
entry. Note that a 1 × 𝐼 or 𝐼 × 1 matrix over ℛ may be viewed as a mapping from 𝐼 → ℛ. The
transpose of 𝐴, denoted by 𝐴T, is the 𝐽 × 𝐼 matrix where (𝐴T)𝑗,𝑖 = (𝐴)𝑖,𝑗 for every 𝑖 ∈ 𝐼 and
𝑗 ∈ 𝐽.

matrix
index sets
entry

transpose
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Now, let ℛ be a semiring. A zero matrix, denoted by 𝟘, is a matrix where every entry is 0;
the index sets of a zero matrix will always be clear from the context. Let 𝐴 and 𝐵 be 𝐼 × 𝐽
matrices over ℛ. The matrix sum of 𝐴 and 𝐵 and the matrix difference of 𝐴 and 𝐵 (if there
are additive inverses), denoted by 𝐴 + 𝐵 and 𝐴 − 𝐵, respectively, are the 𝐼 × 𝐽 matrices such
that for every 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽

(𝐴 + 𝐵)𝑖,𝑗 = (𝐴)𝑖,𝑗 + (𝐵)𝑖,𝑗 and (𝐴 − 𝐵)𝑖,𝑗 = (𝐴)𝑖,𝑗 − (𝐵)𝑖,𝑗.

Additionally, let 𝐾 be a finite, non-empty set. Let 𝐴 be an 𝐼 × 𝐽 matrix over ℛ and 𝐵 a 𝐽 × 𝐾
matrix over ℛ. The matrix product of 𝐴 and 𝐵, denoted by 𝐴 ⋅ 𝐵, is the 𝐼 × 𝐾 matrix where
for every 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾

(𝐴 ⋅ 𝐵)𝑖,𝑘 = ∑
𝑗∈𝐽

(𝐴)𝑖,𝑗 ⋅ (𝐵)𝑗,𝑘.

Now, let 𝐴 be an 𝐼 × 𝐼 matrix over ℛ. If 𝑖 ≠ 𝑗 implies (𝐴)𝑖,𝑗 = 0 for every 𝑖, 𝑗 ∈ 𝐼, then 𝐴
is called a diagonal matrix. Let 𝑋: 𝐼 → ℛ be a mapping; by diag(𝑋) we denote the diagonal
matrix 𝐷 where (𝐷)𝑖,𝑖 = 𝑋(𝑖) for every 𝑖 ∈ 𝐼. An identity matrix, denoted by Id, is defined as
diag(𝑋) where 𝑋(𝑖) = 1 for every 𝑖 ∈ 𝐼; the index set 𝐼 will always be clear from the context.
For 𝑛 ∈ ℕ we inductively define 𝐴𝑛 by

𝐴𝑛 = {
Id if 𝑛 = 0,
𝐴 ⋅ 𝐴𝑛−1 if 𝑛 > 0.

Note that for matrices over a semiring and with fitting index sets we have that
• the matrix sum is associative,
• the matrix sum is commutative,
• 𝟘 is an identity element w.r.t. the matrix sum,
• the matrix product is associative,
• Id is an identity element w.r.t. the matrix product,
• 𝟘 is an absorbing element w.r.t. the matrix product, and
• the matrix product distributes over the matrix sum.

Hence, for an index set 𝐼 and a semiring ℛ the set of 𝐼 × 𝐼 matrices over ℛ together with the
operations from above also define a semiring.
Still, let 𝐴 be an 𝐼 × 𝐼 matrix, but now over ℝ. We call 𝐴 invertible if there is an 𝐼 × 𝐼 matrix

𝐵 such that 𝐴 ⋅ 𝐵 = 𝐵 ⋅ 𝐴 = Id. Note that 𝐵 is unique if it exists and can be determined
effectively. Therefore we call 𝐵 the inverse of 𝐴 and denote it by 𝐴−1. Let 𝑋: 𝐼 → ℝ≠0. Note
that diag(𝑋) is invertible and that (diag(𝑋))−1 = diag(𝑋′) where 𝑋′ : 𝐼 → ℝ≠0 such that
𝑋′(𝑖) = (𝑋(𝑖))−1 for every 𝑖 ∈ 𝐼.

Theorem 7.3.8 (Heuser [Heu06, instantiation of Theorem 12.4, page 109]). Let 𝐼 be a finite,
non-empty set and let 𝐴 be an 𝐼 × 𝐼 matrix over ℝ. If the Neumann series ∑𝑛∈ℕ 𝐴𝑛 converges,
then Id−𝐴 is invertible and

(Id−𝐴)−1 = ∑
𝑛∈ℕ

𝐴𝑛.

We now describe a view on wsas using matrices. Let (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an ℛ-wsa. We will
interpret 𝐽 as a 1 × 𝑃 matrix, 𝐹 as a 𝑃 × 1 matrix, and we will write 𝛱(𝜎) for the 𝑃 × 𝑃 matrix
defined as (𝛱(𝜎))𝑝,𝑝′ = 𝛱(𝑝, 𝜎, 𝑝′) for every 𝜎 ∈ 𝛴, 𝑝, 𝑝′ ∈ 𝑃.

zero matrix (𝟘)

matrix sum
matrix difference

matrix product

diagonal matrix (diag)
identity matrix (Id)

invertible

inverse

Neumann series
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Definition 7.3.9 (matrix semantics of wsa). Let 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) be an ℛ-wsa. The
weighted string language of 𝒩 (by matrix semantics), denoted by ⟦𝒩⟧mat, is defined as

⟦𝒩⟧mat : 𝛴∗ → ℛ, 𝑤1…𝑤𝑛 ↦ 𝐽 ⋅ (
𝑛

∏
𝑖=1

𝛱(𝑤𝑖)) ⋅ 𝐹.

Recalling the run semantics of wsas (Definition 7.1.4), we note that ⟦𝒩⟧mat = ⟦𝒩⟧run [Eil74,
Chapter Ⅵ, Corollary 6.2; page 137].

Lemma 7.3.10. Let ℛ be a complete commutative semiring and 𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹) an
ℛ-wsa. Then we have

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) = ∑
𝑖∈ℕ

𝐽 ⋅ 𝐴𝑖 ⋅ 𝐹 where 𝐴 = ∑
𝜎∈𝛴

𝛱(𝜎).

Proof. We can transform the left-hand side of the equation in the lemma as follows.

∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) = ∑
𝑖∈ℕ

∑
𝑤1,…,𝑤𝑖∈𝛴

⟦𝒩⟧(𝑤1…𝑤𝑖) (by definition of 𝛴∗)

= ∑
𝑖∈ℕ

∑
𝑤1,…,𝑤𝑖∈𝛴

𝐽 ⋅ (
𝑖

∏
𝑗=1

𝛱(𝑤𝑗)) ⋅ 𝐹 (by Definition 7.3.9)

= ∑
𝑖∈ℕ

𝐽 ⋅ ( ∑
𝑤1,…,𝑤𝑖∈𝛴

𝑖
∏
𝑗=1

𝛱(𝑤𝑗)) ⋅ 𝐹 (by distributivity)

= ∑
𝑖∈ℕ

𝐽 ⋅ (
𝑖

∏
𝑗=1

∑
𝜎∈𝛴

𝛱(𝜎)) ⋅ 𝐹 (by Lemma 2.2.2)

= ∑
𝑖∈ℕ

𝐽 ⋅ 𝐴𝑖 ⋅ 𝐹 (by definition of 𝐴 and ∏)

q.e.d.

7.3.2. Constructing an Out-Probabilistic WSA from a Converging WSA

In this subsection we show that each converging ℙ-wsa can be transformed into an equiv-
alent out-probabilistic ℙ-wsa (Theorem 7.3.14). This result is important for some proofs in
Section 7.3.3.

For the results in this subsection, we exploit the fact that the elements of the probability
semiring (except ∞) are real numbers: In intermediate calculation steps we sometimes use
subtraction and division with elements from the probability semiring. Subtraction might result
in negative numbers, which are not part of the probability semiring; however, we ensure that
no negative numbers end up as weights in a ℙ-wsa.

For themain theorem (Theorem 7.3.14) of this subsection, we need the following construction
and lemma. The idea of the construction is to change the weights of a ℙ-wsa locally without
changing its semantics. For this purpose, the weights of “incoming” transitions (including
initial weights) of some state 𝑝 are scaled by some factor 𝑥 while the weights of “outgoing”
transitions (including final weights) of 𝑝 are scaled by 𝑥−1. Weights of transitions from 𝑝 to 𝑝
itself do not change. Figure 7.8 visualizes this idea. Construction 7.3.11 applies this idea to all
states simultaneously.
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𝑝 𝑝
𝜋1

𝜋2

𝜋3

𝜋4

𝜋5

𝜋6

𝜋1 ⋅ 𝑥

𝜋2 ⋅ 𝑥

𝜋3

𝜋4

𝑥−1 ⋅ 𝜋5

𝑥−1 ⋅ 𝜋6

Figure 7.8.: Changing weights 𝜋1, …, 𝜋6 at state 𝑝 of a wsa with a positive real 𝑥.

Construction 7.3.11 (cf. weight pushing in related work, page 133). Let𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹)
be a ℙ-wsa and let 𝑋: 𝑃 → ℝ>0. We construct the ℙ-wsa

𝒩′ = (𝑃 , 𝛴, 𝐽 ⋅ diag(𝑋), 𝛱′, diag(𝑋)−1 ⋅ 𝐹 ) where

𝛱′(𝜎) = diag(𝑋)−1 ⋅ 𝛱(𝜎) ⋅ diag(𝑋) for every 𝜎 ∈ 𝛴.

Lemma 7.3.12 (cf. weight pushing in related work, page 133). For 𝒩 and 𝒩′ from Construc-
tion 7.3.11, we have that ⟦𝒩⟧ = ⟦𝒩′⟧.

Proof. Let𝑤 ∈ 𝛴∗. Using thematrix semantics ofwsas (Definition 7.3.9), it is easy to see that for
every factor diag(𝑋) in ⟦𝒩′⟧(𝑤) there is the adjacent factor diag(𝑋)−1 and vice versa. q.e.d.

Construction 7.3.13 (cf. renormalization in relatedwork, page 133). Let𝒩 = (𝑃 , 𝛴, 𝐽, 𝛱, 𝐹)
be a convergent and reduced ℙ-wsa. Also, let 𝐴 = ∑𝜎∈𝛴 𝛱(𝜎). Then Id−𝐴 is invertible and
we construct the ℙ-wsa 𝒩′ by applying Construction 7.3.11 to 𝒩 with 𝑋 = (Id−𝐴)−1 ⋅ 𝐹.

Theorem 7.3.14 (cf. renormalization in related work, page 133). For every convergent ℙ-wsa
there is an equivalent out-probabilistic and reduced ℙ-wsa, which can be effectively determined
by Construction 7.3.13.

Proof. Let 𝒩 be a convergent ℙ-wsa. Without loss of generality we can assume that 𝒩 is re-
duced (cf. Construction 7.3.1 and Observation 7.3.2). Let 𝐴 be defined as in Construction 7.3.13.
We first show that Id−𝐴 is invertible. For every 𝑝, 𝑝′ ∈ 𝑃 and 𝑖, 𝑘 ∈ ℕ we have

∞ > ∑
𝑤∈𝛴∗

⟦𝒩⟧(𝑤) (by convergence)

= ∑
𝑗∈ℕ

𝐽 ⋅ 𝐴𝑗 ⋅ 𝐹 (by Lemma 7.3.10)

≥ ∑
𝑗≥𝑖+𝑘

𝐽 ⋅ 𝐴𝑗 ⋅ 𝐹 (by dropping summands)

= ∑
𝑗∈ℕ

𝐽 ⋅ 𝐴𝑖 ⋅ 𝐴𝑗 ⋅ 𝐴𝑘 ⋅ 𝐹 (by def. of 𝐴𝑗)

≥ ∑
𝑗∈ℕ

(𝐽 ⋅ 𝐴𝑖)𝑝 ⋅ (𝐴𝑗)𝑝,𝑝′ ⋅ (𝐴𝑘 ⋅ 𝐹 )𝑝′ (by dropping summands from matrix product)

= (𝐽 ⋅ 𝐴𝑖)𝑝 ⋅ (∑
𝑗∈ℕ

(𝐴𝑗)𝑝,𝑝′) ⋅ (𝐴𝑘 ⋅ 𝐹 )𝑝′ . (by distributivity)
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Since 𝒩 is reduced, there are 𝑖, 𝑘 ∈ ℕ such that (𝐽 ⋅ 𝐴𝑖)𝑝 > 0 and (𝐴𝑘 ⋅ 𝐹 )𝑝′ > 0; therefore
∑𝑗∈ℕ(𝐴𝑗)𝑝,𝑝′ < ∞ for every 𝑝, 𝑝′ ∈ 𝑃. Hence, ∑𝑗∈ℕ 𝐴𝑗 is a converging Neumann series, and
therefore by Theorem 7.3.8 the inverse of Id−𝐴 exists and is equal to this sum.

Since Id−𝐴 is invertible, Construction 7.3.13 may be applied to 𝒩. We now show that the
constructed wsa is out-probabilistic. The definition of 𝑋 in the construction may be trans-
formed as follows:

𝑋 = (Id−𝐴)−1 ⋅ 𝐹
⟺ (Id−𝐴) ⋅ 𝑋 = 𝐹 (by def. of inverse)
⟺ 𝑋 − 𝐴 ⋅ 𝑋 = 𝐹 (by distributivity)
⟺ 𝑋 = 𝐹 + 𝐴 ⋅ 𝑋
⟺ diag(𝑋)−1 ⋅ 𝑋 = diag(𝑋)−1 ⋅ 𝐹 + diag(𝑋)−1 ⋅ 𝐴 ⋅ 𝑋 (by distributivity)
⟺ (1 … 1)T = diag(𝑋)−1 ⋅ 𝐹 + diag(𝑋)−1 ⋅ 𝐴 ⋅ diag(𝑋) ⋅ (1 … 1)T

(since 𝑋 = diag(𝑋) ⋅ (1 … 1)T)
⟺ ∀𝑝 ∈ 𝑃: 1 = (diag(𝑋)−1 ⋅ 𝐹 )𝑝 + (diag(𝑋)−1 ⋅ 𝐴 ⋅ diag(𝑋) ⋅ (1 … 1)T)𝑝

⟺ ∀𝑝 ∈ 𝑃: 1 = (diag(𝑋)−1 ⋅ 𝐹 )𝑝 + ∑
𝑝′∈𝑃

(diag(𝑋)−1 ⋅ 𝐴 ⋅ diag(𝑋))𝑝,𝑝′

(by def. of matrix product)

⟺ ∀𝑝 ∈ 𝑃: 1 = (diag(𝑋)−1 ⋅ 𝐹 )𝑝 + ∑
𝜎∈𝛴,𝑝′∈𝑃

(diag(𝑋)−1 ⋅ 𝛱(𝜎) ⋅ diag(𝑋))𝑝,𝑝′

(by def. of 𝐴 and distributivity)

The last transformation step exactly resembles the definition of out-probabilistic for 𝒩′.
In order that Construction 7.3.11 can be applied, it remains to be shown that every entry of𝑋

is strictly positive. Recall that every entry of 𝐴 is non-negative and that for every 𝑝 ∈ 𝑃 there
is a 𝑗 ∈ ℕ such that (𝐴𝑗 ⋅ 𝐹 )𝑝 > 0. This implies that every entry of (Id−𝐴)−1 = ∑𝑗∈ℕ 𝐴𝑗 is
non-negative and that every entry of 𝑋 = (∑𝑗∈ℕ 𝐴𝑗) ⋅ 𝐹 is strictly positive.

All in all 𝑋 is well defined and we can apply Construction 7.3.11 to 𝒩 and 𝑋, which yields a
ℙ-wsa 𝒩′ that is out-probabilistic as shown above and satisfies ⟦𝒩⟧ = ⟦𝒩′⟧ by Lemma 7.3.12.
Since every entry of 𝑋 is strictly positive, it is easy to see by Construction 7.3.11 that 𝒩′ is
reduced if 𝒩 is reduced. q.e.d.

Note that a wsa can be seen as a special case of a wta or wcfg. In this view, 𝑋 in Construc-
tion 7.3.13 represents the inside weights of the wta (cf. Section 4.5) or wcfg, and the application
of Construction 7.3.11 resembles the renormalization of the wcfg (cf. related work, page 133).

Corollary 7.3.15 (cf. renormalization in related work, page 133). For every consistent ℙ-wsa
there is an equivalent probabilistic ℙ-wsa, which can be effectively determined by Construc-
tion 7.3.13.

Proof. Since the given wsa can be easily reduced (cf. Construction 7.3.1 and Observation 7.3.2),
this follows directly from Theorem 7.3.14 and Lemma 7.3.6. q.e.d.

Corollary 7.3.16 (cf. related work (page 132) of Paz [Paz71]). The class of weighted languages
recognizable by probabilistic ℙ-wsas is closed under reversal.

156



7.3. The Probabilistic Case

Proof. A wsa can easily be reversed by transposing the transition matrices and interchanging
initial and final weights. The corollary follows by Corollary 7.3.15. q.e.d.

7.3.3. Binarization and Probabilistic Tree Automata

In Section 7.2 we transformed wstas into wutas and vice versa and only worried about the
weights of trees. In this section we will additionally consider the property of being probabilis-
tic, i.e., we show that for every probabilistic wsta following one of our binarization strategies
there is a probabilistic wuta and vice versa such that both automata assign the same weights to
trees modulo a homomorphism (analogously to Corollaries 7.2.2 and 7.2.4 and Theorem 7.2.9).
For that purpose we first define some additional notions for wstas and wutas.
The notions for wtas defined in Section 4.3 can directly be carried over to wstas. We call a

w(s)ta ℳ = (𝑄, 𝛴, 𝐼, 𝛥) reduced if for every 𝑞 ∈ 𝑄 there are (𝑡, 𝑟) ∈ runℳ and 𝜌 ∈ pos(𝑡)
such that ⟦ℳ⟧(𝑡, 𝑟) > 0 and 𝑡(𝜌) = 𝑞. We will also need the following lemma.

Lemma 7.3.17 (Stüber [Stü12, Lemma 11]). For every probabilistic ℙ-w(s)ta there is an equiva-
lent reduced and probabilistic ℙ-w(s)ta that can be effectively determined by removing all states
that are not accessible.

Now let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a wuta and let (𝑃𝑞,𝜎, 𝑄, 𝐽𝑞,𝜎, 𝛱𝑞,𝜎, 𝐹𝑞,𝜎) = 𝛥(𝑞, 𝜎) for every
𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴. The wuta ℳ is called

• reduced if 𝛥(𝑞, 𝜎) is reduced for every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴, and for every 𝑞 ∈ 𝑄 there are
(𝑡, 𝑟) ∈ runℳ and 𝜌 ∈ pos(𝑡) such that ⟦ℳ⟧(𝑡, 𝑟) > 0 and 𝑟(𝜌) = 𝑞.

• out-probabilistic if 𝛥(𝑞, 𝜎) is out-probabilistic for every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴, and

∀𝑞 ∈ 𝑄: ∑
𝜎∈𝛴

∑
𝑝∈𝑃𝑞,𝜎

𝐽𝑞,𝜎(𝑝) = 1,

• semi-probabilistic if ℳ is out-probabilistic and ∑𝑞∈𝑄 𝐼(𝑞) = 1,

• consistent if ∑𝑡∈U𝛴
⟦ℳ⟧(𝑡) = 1,

• probabilistic if it is semi-probabilistic and consistent.

Note that if ℳ is semi-probabilistic, then the wsas in the image of 𝛥 are not semi-probabilistic
in general. Also note that neither for w(s)tas nor for wutas being semi-probabilistic and reduced
generally implies being consistent.

Left-Branching Binarization We first look at the property of being probabilistic in the
context of left-branching binarization.

Theorem 7.3.18. Let 𝛴 be an alphabet, 𝑆 = {T,H}, 𝛤 the left-branching alphabet for 𝛴, and ℎ
the left-collecting homomorphism for 𝛴.

reduced

out-probabilistic

semi-probabilistic

consistent

probabilistic
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• For every probabilistic ℙ-wuta ℳ with terminal alphabet 𝛴,
there is a probabilistic T-rooted ℙ-𝑆-wsta ℳ′ with terminal alphabet 𝛤
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧), and

• for every probabilistic T-rooted ℙ-𝑆-wsta ℳ′ with terminal alphabet 𝛤,
there is a probabilistic ℙ-wuta ℳ with terminal alphabet 𝛴
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

These automata can be effectively determined.

Proof. Note that the result of unifying a probabilistic ℙ-wuta is also probabilistic. Therefore,
for the first item of the theorem we can assume w.l.o.g. that ℳ is unified. Hence, we can con-
struct the respective automaton in both items as in the definition of left-related. By definition
of left-related, ℳ is semi-probabilistic iff ℳ′ is semi-probabilistic. The theorem follows by
Theorem 7.2.1. q.e.d.

Right-Branching Binarization In this paragraph we show a theorem for right-branching
binarization (Theorem 7.3.22) that is analogous to Theorem 7.3.18. The proof is based on two
constructions. The first construction (Construction 7.3.20) transforms a ℙ-wuta (with some
additional properties) into a ℙ-𝑆-wsta where 𝑆 is the set of sorts used for right-branching bi-
narization. The second construction (Construction 7.3.21) transforms a ℙ-𝑆-wsta (with some
additional properties) into a ℙ-wuta. In the proof we show for each construction that, if the
construction starts with a probabilistic automaton ℳ, then the result is also probabilistic and
equivalent (modulo application of the right-branching homomorphism) to ℳ. Since the con-
structions consist of several steps, these properties are also shown for the intermediate results.

Besides the constructions, we also need an additional lemma.

Lemma 7.3.19. For every probabilistic ℙ-wuta there is an equivalent reduced and probabilistic
ℙ-wuta that can be effectively determined.

Proof. Let ℳ1 be the given probabilistic ℙ-wuta. Let ℳ2 be the result of unifying ℳ1. Note
that also ℳ2 is probabilistic.

We can now construct the wstaℳ′
3 such thatℳ2 andℳ′

3 are left-related. ByTheorem 7.2.1,
ℳ′

3 is consistent. Since ℳ2 is probabilistic, by the definition of left-related, ℳ′
3 is semi-

probabilistic. Hence, ℳ′
3 is probabilistic.

By Lemma 7.3.17 we can construct an equivalent wsta ℳ′
4 that is reduced.

Now we construct the wuta ℳ5 such that ℳ5 and ℳ′
4 are left-related. By applying Theo-

rem 7.2.1 twice and Lemma 7.3.17 in between, we have that ⟦ℳ2⟧ = ⟦ℳ5⟧. Since ℳ′
4 is prob-

abilistic, so is ℳ5 by definition of left-related. Since ℳ′
4 is reduced, by definition of left-related

the wsas in ℳ5 are terminating and we have that for every 𝑞 ∈ 𝑄 there are (𝑡, 𝑟) ∈ runℳ and
𝜌 ∈ pos(𝑡) such that ⟦ℳ⟧(𝑡, 𝑟) > 0 and 𝑡(𝜌) = 𝑞.

The final wuta ℳ6 is constructed by reducing the wsas in ℳ5. Since these wsas are ter-
minating and out-probabilistic, by Lemma 7.3.7 the resulting wsas are reduced and also out-
probabilistic. Note that the other mentioned properties of ℳ5 also hold for ℳ6. Hence, ℳ6
is reduced, probabilistic, and equivalent to ℳ1. q.e.d.
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Construction 7.3.20. Let 𝛴 be an alphabet, 𝑆 = {T,H}, and 𝛤 the right-branching alphabet
for 𝛴. Let ℳ be a reduced probabilistic ℙ-wuta over the terminal alphabet 𝛴. We construct
the T-rooted ℙ-𝑆-wsta ℳ′ over the terminal alphabet 𝛤 as follows.

• Construct the ℙ-wuta ℳ1 by reversing every wsa in ℳ.
• Construct the ℙ-wuta ℳ2 by applying Construction 7.3.13 to every wsa in ℳ1.
• Construct the ℙ-wuta ℳ3 by unifying ℳ2.
• Construct the ℙ-wuta ℳ4 by reversing every wsa in ℳ3.
• Construct the ℙ-𝑆-wsta ℳ′ such that ℳ4 and ℳ′ are right-related.

Construction 7.3.21. Let 𝛴 be an alphabet, 𝑆 = {T,H}, and 𝛤 the right-branching alphabet
for 𝛴. Let ℳ′ be a reduced T-rooted ℙ-𝑆-wsta over the terminal alphabet 𝛤. We construct the
ℙ-wuta ℳ over the terminal alphabet 𝛴 as follows.

• Construct the ℙ-wuta ℳ1 such that ℳ1 and ℳ are right-related.
• Construct the ℙ-wuta ℳ2 by reducing every wsa in ℳ1.
• Construct the ℙ-wuta ℳ by applying Construction 7.3.13 to every wsa in ℳ2.

Theorem 7.3.22. Let 𝛴 be an alphabet, 𝑆 = {T,H}, 𝛤 the right-branching alphabet for 𝛴, and
ℎ the right-collecting homomorphism for 𝛴.

• For every probabilistic ℙ-wuta ℳ with terminal alphabet 𝛴,
there is a probabilistic T-rooted ℙ-𝑆-wsta ℳ′ with terminal alphabet 𝛤
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧), and

• for every probabilistic T-rooted ℙ-𝑆-wsta ℳ′ with terminal alphabet 𝛤,
there is a probabilistic ℙ-wuta ℳ with terminal alphabet 𝛴
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

These automata can be effectively determined by Construction 7.3.20 and Construction 7.3.21, re-
spectively.

Proof of first item. By Lemma 7.3.19 we can assume w.l.o.g. that ℳ is reduced. We first show
that ℳ′ is probabilistic by following the steps of Construction 7.3.20.

• Note that because ℳ is reduced and probabilistic, the wsas in ℳ are reduced and out-
probabilistic, so by Lemma 7.3.4 they are also converging. The reversals of these wsas,
i.e., the wsas in ℳ1, are then also reduced and converging.

• Hence, Construction 7.3.13 can be applied and by Theorem 7.3.14 all wsas in ℳ2 are
reduced and out-probabilistic. By Lemma 7.3.6 and Theorem 7.3.14 we have that the
sum of the initial weights of a wsa in ℳ2 equals the sum of the initial weights of the
corresponding wsa in ℳ.

• By the definition of unification, also the wsas in ℳ3 are out-probabilistic and the sum of
initial weights of a wsa in ℳ3 equals the sum of the initial weights of the corresponding
wsa in ℳ.

• By reversing the wsas of ℳ3, we have that the sum of the final weights of a wsa in ℳ4
equals the sum of the initial weights of the corresponding wsa in ℳ.

• By that and since the reversals of the wsas in ℳ4 are out-probabilistic, we have that by
definition of right-related ℳ′ is probabilistic.

Note that ⟦ℳ⟧ = ⟦ℳ1⟧ = ⟦ℳ2⟧ = ⟦ℳ3⟧ = ⟦ℳ4⟧ since the reversal of a wsa, Construc-
tion 7.3.13 (by Theorem 7.3.14), and unification of a wuta do not change semantics. Hence, the
equation in the theorem follows by Theorem 7.2.3. q.e.d.
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Proof of second item. By Lemma 7.3.17 we can assume w.l.o.g. that ℳ′ is reduced. We first
show that ℳ is out-probabilistic. For that purpose we first show that the wsas in ℳ are out-
probabilistic by following the steps of Construction 7.3.21:

• Since ℳ′ is probabilistic, by the definition of right-related the reversals of the wsas in
ℳ1 are terminating. Hence, by Lemma 7.3.4 the wsas in ℳ1 are converging.

• By Observation 7.3.2, also the wsas in ℳ2 are converging.
• By the previous item, Construction 7.3.13 is applicable, and by Theorem 7.3.14, the wsas
in ℳ are out-probabilistic.

This concludes the first half of showing that ℳ is out-probabilistic.
For the second half, note that all wsas in ℳ1 have the same set of states 𝑃 = 𝑄′(H) where

𝑄′ is the 𝑆-sorted alphabet of states of ℳ′. Let 𝑄, 𝛴, 𝐼, 𝛥1, 𝛥2, and 𝛥 such that ℳ1 =
(𝑄, 𝛴, 𝐼, 𝛥1), ℳ2 = (𝑄, 𝛴, 𝐼, 𝛥2), and ℳ = (𝑄, 𝛴, 𝐼, 𝛥). By following again the steps of
Construction 7.3.21, we have the following for every 𝑞 ∈ 𝑄:

• Because ℳ′ is probabilistic, we have ∑𝜎∈𝛴 ∑𝑝∈𝑃 𝐹𝑞,𝜎(𝑝) = 1 where 𝐹𝑞,𝜎 represents
the final weights of 𝛥1(𝑞, 𝜎) for every 𝜎 ∈ 𝛴. Note that, since ℳ is reduced, the re-
versal of 𝛥1(𝑞, 𝜎) is terminating for every 𝜎 ∈ 𝛴. Therefore by Lemma 7.3.6 we have
∑𝜎∈𝛴 ∑𝑤∈𝑄∗⟦𝛥1(𝑞, 𝜎)⟧(𝑤) = 1.

• By Observation 7.3.2 this also holds for 𝛥2.
• By Theorem 7.3.14 this also holds for 𝛥, and 𝛥(𝑞, 𝜎) is reduced for every 𝜎 ∈ 𝛴. There-
fore by Lemma 7.3.6 we have ∑𝜎∈𝛴 ∑𝑝∈𝑃 𝐽 ′

𝑞,𝜎(𝑝) = 1 where 𝐽 ′
𝑞,𝜎 represents the initial

weights of 𝛥(𝑞, 𝜎) for every 𝜎 ∈ 𝛴.
This concludes showing that ℳ is out-probabilistic.

Since ℳ′ is probabilistic, by definition of right-related the initial weights 𝐼 sum up to 1.
Together with ℳ being out-probabilistic this implies that ℳ is semi-probabilistic.

By combining Theorem 7.2.3, Observation 7.3.2, and Lemma 7.3.12, we immediately get that
⟦ℳ⟧ = ℎ(⟦ℳ′⟧). Since ℳ′ is probabilistic, this implies that ℳ is consistent. Since ℳ is also
semi-probabilistic, we have that ℳ is probabilistic. q.e.d.

Mixed Binarization Note that for mixed binarization the direction from wutas to wstas is
already covered by our results for left- or right-branching binarization because the left- or
right-branching binarization of an unranked tree is also a mixed binarization. For the other
direction we need an additional construction.

Construction 7.3.23. Let 𝛴 be an alphabet, 𝑆 = {T,H,H}, and 𝛤 the mixed-branching al-
phabet for 𝛴. Let ℳ′ be a reduced T-rooted ℙ-𝑆-wsta. We construct the ℙ-wuta ℳ as follows.

• Construct the ℙ-wuta ℳ1 by applying Construction 7.2.8 to ℳ′.
• Construct the ℙ-wuta ℳ2 by reducing every wsa in ℳ1.
• Construct the ℙ-wuta ℳ by applying Construction 7.3.13 to every wsa in ℳ2.

Theorem 7.3.24. Let 𝛴 be an alphabet, 𝑆 = {T,H,H}, 𝛤 the mixed-branching alphabet for 𝛴,
and ℎ the mixed-collecting homomorphism for 𝛴.

• For every probabilistic T-rooted ℙ-𝑆-wsta ℳ′ with terminal alphabet 𝛤,
there is a probabilistic ℙ-wuta ℳ with terminal alphabet 𝛴
such that ⟦ℳ⟧ = ℎ(⟦ℳ′⟧).

The wuta ℳ can be effectively determined by Construction 7.3.23.
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The proof is very similar to the proof of the second item of Theorem 7.3.22.

Proof. Let 𝑄, 𝛴, 𝐼, 𝛥1, 𝛥2, and 𝛥 such that ℳ1 = (𝑄, 𝛴, 𝐼, 𝛥1), ℳ2 = (𝑄, 𝛴, 𝐼, 𝛥2),
and ℳ = (𝑄, 𝛴, 𝐼, 𝛥). Also, for 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴 we use the objects 𝒩𝑞,𝜎 and 𝐽𝑞,𝜎 from
Construction 7.2.8.
By Lemma 7.3.17 we can assume w.l.o.g. that ℳ′ is reduced. We first show that ℳ is out-

probabilistic. For that purpose we first show that the wsas in ℳ are out-probabilistic. We have
the following for every 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴. Because ℳ′ is probabilistic and reduced, 𝒩𝑞,𝜎
is out-probabilistic and terminating by Construction 7.2.8, and therefore also convergent by
Lemma 7.3.4. We now follow the steps of Construction 7.3.23.

• By Lemma 7.2.7, also 𝛥1(𝑞, 𝜎) is convergent.
• By Observation 7.3.2, also 𝛥2(𝑞, 𝜎) is convergent and additionally reduced.
• By the previous item, Construction 7.3.13 is applicable, and by Theorem 7.3.14, 𝛥(𝑞, 𝜎)
is out-probabilistic.

This concludes the first half of showing that ℳ is out-probabilistic.
For the second half, note that all wsas 𝒩𝑞,𝜎 for 𝑞 ∈ 𝑄 and 𝜎 ∈ 𝛴 have the same set of states;

we call this set 𝑃. We have the following for every 𝑞 ∈ 𝑄. Because ℳ′ is probabilistic, we
have ∑𝜎∈𝛴 ∑𝑝∈𝑃 𝐽𝑞,𝜎(𝑝) = 1. Recall that 𝒩𝑞,𝜎 is terminating for every 𝜎 ∈ 𝛴. Therefore by
Lemma 7.3.6 we have ∑𝜎∈𝛴 ∑𝑤∈𝑄∗⟦𝒩𝑞,𝜎⟧(𝑤) = 1. Again we follow the steps of Construc-
tion 7.3.23.

• By Lemma 7.2.7 we have ∑𝜎∈𝛴 ∑𝑤∈𝑄∗⟦𝛥1(𝑞, 𝜎)⟧(𝑤) = 1.
• By Observation 7.3.2, this also holds for 𝛥2.
• ByTheorem 7.3.14, this also holds for 𝛥, and 𝛥(𝑞, 𝜎) is reduced for every 𝜎 ∈ 𝛴. There-
fore by Lemma 7.3.6 we have ∑𝜎∈𝛴 ∑𝑝∈𝑃 𝐽 ′

𝑞,𝜎(𝑝) = 1 where 𝐽 ′
𝑞,𝜎 represents the initial

weights of 𝛥(𝑞, 𝜎) for every 𝜎 ∈ 𝛴.
This concludes showing that ℳ is out-probabilistic.
By Construction 7.2.8, the initial weights sum up to 1. Together with ℳ being out-probabi-

listic this implies that ℳ is semi-probabilistic.
By combining Theorem 7.2.9, Observation 7.3.2, and Lemma 7.3.12, we immediately get that

⟦ℳ⟧ = ℎ(⟦ℳ′⟧). Since ℳ′ is probabilistic, this implies that ℳ is consistent. Since ℳ is also
semi-probabilistic, we have that ℳ is probabilistic. q.e.d.

7.4. Connection to the Training Methods in Previous Chapters

As already indicated by Figure 7.3 in the introduction of this chapter, existing training algo-
rithms for w(s)ta can be plugged into the binarization framework. By the results of this chapter,
we effectively end up with a training framework for wutas (Corollaries 7.2.2 and 7.2.4 andThe-
orem 7.2.9) or even probabilistic wutas (Theorems 7.3.18, 7.3.22 and 7.3.24).
Especially the training algorithms presented in Chapters 5 and 6 can be augmented with

binarization. The wtas in these algorithms can be easily replaced by wstas, but some care has
to be taken when states are split or merged: When a state is split into several states, the new
states must have the same sort as the original state. Also, only states of the same sort may be
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Figure 7.9.: Visualization of the binarization strategy used in Section 6.6. Note that the yields
of both trees are identical.

merged, and the resulting statemust have the same sort as the original states. These restrictions
can easily be incorporated into the algorithms.

In some experiments in Section 6.6, we already used binarization. However we could not use
a binarization strategy from the current chapter because our parsing algorithm expects that the
parsed sentence is the yield of the parsing result. Therefore we used the following binarization
strategy: Let 𝛴 be an alphabet and let 𝑆 = {T,H} be a set of sorts. Based on 𝛴 and assuming
Cons, Single ∉ 𝛴, we define the (𝑆 × 𝑆∗)-sorted alphabet 𝛤 by

𝛤 (T,H) = {�̂� ∣ 𝜎 ∈ 𝛴}, 𝛤 (H,TH) = {Cons},
𝛤 (T,𝜀) = 𝛴, 𝛤 (H,T) = {Single}.

There is a unique homomorphism ℎ from the 𝑆-sorted term algebra over 𝛤 into the 𝑆-sorted
algebra ((𝐴(𝑠) ∣ 𝑠 ∈ 𝑆), (𝜃𝜎 ∣ 𝜎 ∈ 𝛤)) where 𝐴(T) = U𝛴, 𝐴(H) = (U𝛴)∗, and

∀𝜎 ∈ 𝛴: 𝜃�̂�(𝑡1…𝑡𝑘) = 𝜎(𝑡1, …, 𝑡𝑘), 𝜃Cons(𝑡0, 𝑡1…𝑡𝑘) = 𝑡0𝑡1…𝑡𝑘,
∀𝜎 ∈ 𝛴: 𝜃𝜎() = 𝜎, 𝜃Single(𝑡) = 𝑡.

The homomorphism ℎ is visualized in Figure 7.9. It represents the binarization strategy we
used in Section 6.6. In Vanda, this binarization strategy is called leftbranching1 and it is
enabled by the command line option --binarization=leftbranching1.

Although leftbranching1 binarization is rather similar to left-branching binarization, we
cannot immediately transfer our results for left-branching binarization to leftbranching1.
However, we assume that it is possible to transfer the results by adapting the relevant con-
structions. Despite the lack of a formal proof, we considered leftbranching1 binarization a
valid replacement for left-branching binarization in our experiments.

7.5. Conclusion and Further Research

In this section we formalized three binarization strategies of Matsuzaki, Miyao, and Tsujii
[MMT05]. Following the ideas of Goguen,Thatcher, Wagner, andWright [Gog+77], we showed
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that each binarization strategy can be combined with w(s)tas, which yields devices that are ex-
actly as powerful as wutas (Corollaries 7.2.2 and 7.2.4 andTheorem 7.2.9). We also showed that
this is still true if probabilistic w(s)tas and probabilistic wutas are considered (Theorems 7.3.18,
7.3.22 and 7.3.24).
Similar results can probably be shown for other binarization strategies, e.g., for the binariza-

tion strategy leftbranching1 in Vanda (cf. Section 7.4).
Let 𝐶 be a set of trees. The set of child label sequences of 𝐶 is defined as set of all sequences of

child labels of nodes of trees in 𝐶. Let ℛ be a zero-sum free and zero-divisor free commutative
semiring. For each ℛ-wuta we conjecture that the set of child label sequences of the set of
all non-zero weighted trees is a regular string language. This is due to the fact that the right-
hand side of each transition of a wuta uses a wsa to determine the allowed child trees. By the
findings of this work, for a combination of an ℛ-wsta with one of the presented binarization,
we also have that the set of child label sequences of the set of all non-zero weighted trees is a
regular string language.
Considering constituent trees from nlp, one could ask if regular string languages are enough

for such sets of child label sequences. There are binarization strategies that allow to go beyond
regular string languages in this context. For example, the mixed binarization strategy can be
changed such that an arbitrary number of Flips is allowed in a single Cons-Snoc-chain, i.e.,
the direction of growth may be changed arbitrarily often. If this new binarization strategy is
combined with an ℛ-wsta, then we conjecture that the set of child label sequences of the set of
all non-zero weighted trees is a context-free string language, but not a regular string language.
However, in order to train an ℛ-wsta in this context, one has to acquire training data that
contains such Cons-Snoc-chains with different numbers of Flips and it is not clear how to do
that.
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A. Proofs for Preliminaries

Lemma 2.2.2. Let ℛ be a semiring, 𝐼 be a finite set, (𝐴𝑖 ∣ 𝑖 ∈ 𝐼) a family of finite sets, and
(𝑓𝑖 : 𝐴𝑖 → ℛ ∣ 𝑖 ∈ 𝐼) a family of mappings. Then the following holds:

∑
𝑎1∈𝐴1

… ∑
𝑎𝑛∈𝐴𝑛

𝑛
∏
𝑖=1

𝑓𝑖(𝑎𝑖) =
𝑛

∏
𝑖=1

∑
𝑎∈𝐴𝑖

𝑓𝑖(𝑎).

Proof. We can transform the left-hand side as follows:

∑
𝑎1∈𝐴1

… ∑
𝑎𝑛∈𝐴𝑛

𝑛
∏
𝑖=1

𝑓𝑖(𝑎𝑖)

= ∑
𝑎1∈𝐴1

… ∑
𝑎𝑛∈𝐴𝑛

(
𝑛−1
∏
𝑖=1

𝑓𝑖(𝑎𝑖)) ⋅ 𝑓𝑛(𝑎𝑛) (by def. of ∏)

= ∑
𝑎1∈𝐴1

… ∑
𝑎𝑛−1∈𝐴𝑛−1

(
𝑛−1
∏
𝑖=1

𝑓𝑖(𝑎𝑖)) ⋅ ∑
𝑎𝑛∈𝐴𝑛

𝑓𝑛(𝑎𝑛) (by distributivity)

= ( ∑
𝑎1∈𝐴1

… ∑
𝑎𝑛−1∈𝐴𝑛−1

𝑛−1
∏
𝑖=1

𝑓𝑖(𝑎𝑖)) ⋅ ∑
𝑎𝑛∈𝐴𝑛

𝑓𝑛(𝑎𝑛) (by distributivity)

= ( ∑
𝑎1∈𝐴1

𝑓1(𝑎1)) ⋅ … ⋅ ( ∑
𝑎𝑛∈𝐴𝑛

𝑓𝑛(𝑎𝑛)) (by iteration of previous steps)

=
𝑛

∏
𝑖=1

∑
𝑎∈𝐴𝑖

𝑓𝑖(𝑎). (renaming and by def. of ∏)

q.e.d.

introduced on page 30
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B. Proofs for Training of WTAs

Lemma 4.6.2. Let 𝐴 be a countable set, 𝑝 a probability distribution over 𝐴, and 𝑐 and 𝑐𝑠 corpora
over 𝐴, such that 𝑐𝑠(𝑎) = 𝑠 ⋅ 𝑐(𝑎) for every 𝑎 ∈ 𝐴 and some 𝑠 > 0. Then we have

L(𝑐𝑠 ∣ 𝑝) = L(𝑐 ∣ 𝑝)𝑠 and, equivalently, log L(𝑐𝑠 ∣ 𝑝) = 𝑠 ⋅ log L(𝑐 ∣ 𝑝).

Proof. We show the first equation by transforming its left hand side into its right hand side.

L(𝑐𝑠 ∣ 𝑝) = ∏
𝑎∈supp(𝑐𝑠)

𝑝(𝑎)𝑐𝑠(𝑎) (by def. of L)

= ∏
𝑎∈supp(𝑐𝑠)

𝑝(𝑎)𝑠⋅𝑐(𝑎) (by def. of 𝑐𝑠)

= ∏
𝑎∈supp(𝑐𝑠)

(𝑝(𝑎)𝑐(𝑎))𝑠 (by power laws)

= ( ∏
𝑎∈supp(𝑐𝑠)

𝑝(𝑎)𝑐(𝑎))
𝑠

(by power laws)

= ( ∏
𝑎∈supp(𝑐)

𝑝(𝑎)𝑐(𝑎))
𝑠

(by def. of 𝑐𝑠 and 𝑠 > 0)

= L(𝑐 ∣ 𝑝)𝑠 (by def. of L)

The second equation follows directly by the logarithm laws. q.e.d.

Lemma 4.6.1. Let 𝐴 be a countable set, 𝑝 a probability distribution over 𝐴, and 𝑐 a corpus over
𝐴. If 𝑝𝑐 is the empirical distribution of 𝑐, then

H(𝑝𝑐 ∥ 𝑝) = − log L(𝑝𝑐 ∣ 𝑝) = − 1
|𝑐|

⋅ log L(𝑐 ∣ 𝑝).

Proof. We show the first equation by transforming its left hand side into its right hand side.

H(𝑝𝑐 ∥ 𝑝) = − ∑
𝑎∈supp(𝑝𝑐)

𝑝𝑐(𝑎) ⋅ log 𝑝(𝑎) (by def. of H)

= − log ∏
𝑎∈supp(𝑐)

𝑝(𝑎)𝑝𝑐(𝑎) (by logarithm laws)

= − log L(𝑝𝑐 ∣ 𝑝) (by def. of L)

The second equation follows directly by Lemma 4.6.2 and the definition of 𝑝𝑐. q.e.d.

Lemma 4.6.7. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a probabilistic ℙ-wta. For every 𝑞 ∈ 𝑄 and 𝜏 = 𝑞0 →
𝜎(𝑞1, …, 𝑞𝑘) ∈ dom(𝛥) we have

introduced on page 60

introduced on page 60

introduced on page 62
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• E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝑞 ∣ 𝑡, 𝑟)) = outsideℳ(𝑞) ⋅ insideℳ(𝑞),

• E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝜏 ∣ 𝑡, 𝑟)) = outsideℳ(𝑞0) ⋅ 𝛥(𝜏) ⋅ ∏
𝑖∈[𝑘]

insideℳ(𝑞𝑖),

and for every 𝑞 and 𝜏 as above and every 𝑡 ∈ T𝛴 we have

• E⟦ℳ⟧I(⋅∣𝑡)(𝜆𝑟. f(𝑞 ∣ 𝑡, 𝑟)) = 1
⟦ℳ⟧(𝑡)

⋅ ∑
𝜌∈pos(𝑡)

outsideℳ(𝑞 ∣ 𝑡|𝜌) ⋅ insideℳ(𝑞 ∣ 𝑡|𝜌), and

• E⟦ℳ⟧I(⋅∣𝑡)(𝜆𝑟. f(𝜏 ∣ 𝑡, 𝑟))

= 1
⟦ℳ⟧(𝑡)

⋅ ∑
𝜌∈pos(𝑡) :

𝑡(𝜌)=𝜎

outsideℳ(𝑞0 ∣ 𝑡|𝜌) ⋅ 𝛥(𝜏) ⋅ ∏
𝑖∈[𝑘]

insideℳ(𝑞𝑖 ∣ 𝑡|𝜌𝑖).

Proof. For the first item, note that there is a bijection between {(𝑡, 𝜌) ∣ 𝑡 ∈ T𝛴, 𝜌 ∈ pos(𝑡)}
and C𝛴 ×T𝛴. With that, we have the following.

E⟦ℳ⟧I(𝜆(𝑡, 𝑟). f(𝑞 ∣ 𝑡, 𝑟))

= ∑
(𝑡,𝑟)∈runℳ

⟦ℳ⟧I(𝑡, 𝑟) ⋅ f(𝑞 ∣ 𝑡, 𝑟) (by def. of E)

= ∑
(𝑡,𝑟)∈runℳ

⟦ℳ⟧I(𝑡, 𝑟) ⋅ |{𝜌 ∈ pos(𝑡) ∣ 𝑟(𝜌) = 𝑞}| (by def. of f)

= ∑
(𝑡,𝑟)∈runℳ

∑
𝜌∈pos(𝑡) :

𝑟(𝜌)=𝑞

⟦ℳ⟧I(𝑡, 𝑟) (by distributivity)

= ∑
𝑡∈T𝛴

∑
𝜌∈pos(𝑡)

∑
𝑟∈runℳ(𝑡) :

𝑟(𝜌)=𝑞

⟦ℳ⟧I(𝑡, 𝑟) (by commutativity)

= ∑
𝑡∈T𝛴

∑
𝜌∈pos(𝑡)

∑
𝑟1∈c-run𝑞

ℳ(𝑡|𝜌)
∑

𝑟2∈runℳ(𝑡|𝜌) :
𝑟(𝜀)=𝑞

⟦ℳ⟧I(𝑡|𝜌, 𝑟1) ⋅ ⟦ℳ⟧(𝑡|𝜌, 𝑟2) (by def. of ⟦ℳ⟧)

= ∑
𝑐∈C𝛴

∑
𝑡∈T𝛴

∑
𝑟1∈c-run𝑞

ℳ(𝑐)
∑

𝑟2∈runℳ(𝑡) :
𝑟(𝜀)=𝑞

⟦ℳ⟧I(𝑐, 𝑟1) ⋅ ⟦ℳ⟧(𝑡, 𝑟2) (see bijection above)

= ( ∑
𝑐∈C𝛴

∑
𝑟1∈c-run𝑞

ℳ(𝑐)
⟦ℳ⟧I(𝑐, 𝑟1)) ⋅ ( ∑

𝑡∈T𝛴

∑
𝑟2∈runℳ(𝑡) :

𝑟(𝜀)=𝑞

⟦ℳ⟧(𝑡, 𝑟2)) (by comm. and distr.)

= outsideℳ(𝑞) ⋅ insideℳ(𝑞) (by def. of outside and inside)

The second item can be shown analogously.
For the third item, we have the following.

E⟦ℳ⟧I(⋅∣𝑡)(𝜆𝑟. f(𝑞 ∣ 𝑡, 𝑟))

= ∑
𝑟∈supp(⟦ℳ⟧I(⋅∣𝑡))

⟦ℳ⟧I(𝑟 ∣ 𝑡) ⋅ f(𝑞 ∣ 𝑡, 𝑟) (by def. of E)
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= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝑟∈runℳ(𝑡)
⟦ℳ⟧I(𝑡, 𝑟) ⋅ f(𝑞 ∣ 𝑡, 𝑟) (by def. of supp, of ⟦ℳ⟧I(⋅ ∣ 𝑡), distributivity)

= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝑟∈runℳ(𝑡)
∑

𝜌∈pos(𝑡) :
𝑟(𝜌)=𝑞

⟦ℳ⟧I(𝑡, 𝑟) (by def. of f, distributivity)

= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝜌∈pos(𝑡)
∑

𝑟∈runℳ(𝑡) :
𝑟(𝜌)=𝑞

⟦ℳ⟧I(𝑡, 𝑟) (by commutativity)

= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝜌∈pos(𝑡)
∑

𝑟1∈c-run𝑞
ℳ(𝑡|𝜌)

∑
𝑟2∈runℳ(𝑡|𝜌) :

𝑟(𝜀)=𝑞

⟦ℳ⟧I(𝑡|𝜌, 𝑟1) ⋅ ⟦ℳ⟧(𝑡|𝜌, 𝑟2) (by def. of ⟦ℳ⟧I)

= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝜌∈pos(𝑡)
( ∑

𝑟∈c-run𝑞
ℳ(𝑡|𝜌)

⟦ℳ⟧I(𝑡|𝜌, 𝑟)) ⋅ ( ∑
𝑟∈runℳ(𝑡|𝜌) :

𝑟(𝜀)=𝑞

⟦ℳ⟧(𝑡|𝜌, 𝑟)) (by distributivity)

= 1
⟦ℳ⟧(𝑡) ⋅ ∑

𝜌∈pos(𝑡)
outsideℳ(𝑞 ∣ 𝑡|𝜌) ⋅ insideℳ(𝑞 ∣ 𝑡|𝜌) (by def. of outside and inside)

The forth item can be shown analogously. q.e.d.
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C. Proofs for State Splitting and Merging

Theorem 5.1.1. Let ℳ and ℳ′ be 𝔹-wta, and 𝜋 an ℳ′-merger. If ℳ is a faithful 𝜋-merge
of ℳ′, then ⟦ℳ⟧ ⊇ ⟦ℳ′⟧.

Proof. Let ℳ be a faithful 𝜋-merge of ℳ′. Let 𝑡 ∈ ⟦ℳ′⟧ and 𝑟′ ∈ runℳ′(𝑡) a non-zero
weighted run of ℳ′ on 𝑡. By the definition of faithful 𝜋-merge, it is easy to see that merge𝜋(𝑟′)
is a non-zero weighted run of ℳ on 𝑡 and therefore 𝑡 ∈ ⟦ℳ⟧. Hence, ⟦ℳ⟧ ⊇ ⟦ℳ′⟧. q.e.d.

Lemma 5.1.4. Let ℳ and ℳ′ be ℛ-wtas, and let 𝜋 be an ℳ-splitter. If ℳ′ is a proper 𝜋-split
of ℳ, then for every (𝑡, 𝑟) ∈ runℳ and 𝑞′ ∈ split𝜋(𝑟(𝜀)) the following holds:

⟦ℳ⟧(𝑡, 𝑟) = ∑
𝑟′∈split𝜋(𝑟):

𝑟′(𝜀)=𝑞′

⟦ℳ′⟧(𝑡, 𝑟′).

Proof. We prove the lemma by induction over the structure of trees and runs. For brevity we
will not repeat the constraints in sum and product indices in consecutive lines if they do not
change, and we drop the index 𝜋 of split.
Let 𝑘 = rk(𝑡). Assume that the equation in the lemma holds for (𝑡|1, 𝑟|1), …, (𝑡|𝑘, 𝑟|𝑘)

(induction hypothesis). Let 𝜎 = 𝑡(𝜀). We transform the right-hand side of the equation.

∑
𝑟′∈split(𝑟):

𝑟′(𝜀)=𝑞′

⟦ℳ′⟧(𝑡, 𝑟′)

= ∑
𝑞′

1∈split(𝑟(1)),
…,

𝑞′
𝑘∈split(𝑟(𝑘))

∑
𝑟′

1∈split(𝑟|1) :
𝑟′

1(𝜀)=𝑞′
1

… ∑
𝑟′

𝑘∈split(𝑟|𝑘) :
𝑟′

𝑘(𝜀)=𝑞′
𝑘

⟦ℳ′⟧(𝑡, 𝑞′(𝑟′
1, …, 𝑟′

𝑘)) (by def. of split)

= ∑
𝑞′

1,…,𝑞′
𝑘

∑
𝑟′

1

… ∑
𝑟′

𝑘

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) ⋅
𝑘

∏
𝑖=1

⟦ℳ′⟧(𝑡|𝑖, 𝑟′
𝑖) (by def. of ⟦…⟧)

= ∑
𝑞′

1,…,𝑞′
𝑘

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) ⋅ ∑
𝑟′

1

… ∑
𝑟′

𝑘

𝑘
∏
𝑖=1

⟦ℳ′⟧(𝑡|𝑖, 𝑟′
𝑖) (by distributivity)

= ∑
𝑞′

1,…,𝑞′
𝑘

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) ⋅
𝑘

∏
𝑖=1

∑
𝑟′∈split(𝑟|𝑖) :

𝑟′(𝜀)=𝑞′
𝑖

⟦ℳ′⟧(𝑡|𝑖, 𝑟′) (by Lemma 2.2.2)

= ∑
𝑞′

1,…,𝑞′
𝑘

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) ⋅
𝑘

∏
𝑖=1

⟦ℳ⟧(𝑡|𝑖, 𝑟|𝑖) (by induction hypothesis)

= ( ∑
𝑞′

1,…,𝑞′
𝑘

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘))) ⋅
𝑘

∏
𝑖=1

⟦ℳ⟧(𝑡|𝑖, 𝑟|𝑖) (by distributivity)

introduced on page 66

introduced on page 69
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C. Proofs for State Splitting and Merging

= 𝛥(𝑟(𝜀) → 𝜎(𝑟(1), …, 𝑟(𝑘))) ⋅
𝑘

∏
𝑖=1

⟦ℳ⟧(𝑡|𝑖, 𝑟|𝑖) (by def. of proper split)

= ⟦ℳ⟧(𝑡, 𝑟) (by def. of ⟦…⟧)

q.e.d.

Theorem 5.1.5. Let ℳ and ℳ′ be ℛ-wtas with the terminal alphabet 𝛴, and let 𝜋 be an
ℳ-splitter. If ℳ′ is a proper 𝜋-split of ℳ, then ⟦ℳ⟧(𝑡) = ⟦ℳ′⟧(𝑡) for every 𝑡 ∈ T𝛴.

Proof. In the followingwewill drop the index 𝜋 of split. At first, note that split(𝑟1)∩split(𝑟2) =
∅ for every 𝑟1, 𝑟2 ∈ runℳ(𝑡) with 𝑟1 ≠ 𝑟2, and ⋃𝑟∈runℳ(𝑡) split(𝑟) = runℳ′(𝑡). This means
that split describes a partition on runℳ′(𝑡), i.e., the family (split(𝑟) ∣ 𝑟 ∈ runℳ(𝑡)) is a parti-
tioning of runℳ′(𝑡). Now we can transform the right-hand side of Theorem 5.1.5 as follows:

⟦ℳ′⟧(𝑡)
= ∑

𝑟′∈runℳ′(𝑡)
𝐼′(𝑟(𝜀)) ⋅ ⟦ℳ′⟧(𝑡, 𝑟′) (by def. of ⟦…⟧)

= ∑
𝑟∈runℳ(𝑡)

∑
𝑟′∈split(𝑟)

𝐼′(𝑟(𝜀)) ⋅ ⟦ℳ′⟧(𝑡, 𝑟′) (by partitioning runℳ(𝑡))

= ∑
𝑟∈runℳ(𝑡)

∑
𝑞′∈split(𝑟(𝜀))

∑
𝑟′∈split(𝑟):

𝑟′(𝜀)=𝑞′

𝐼′(𝑟(𝜀)) ⋅ ⟦ℳ′⟧(𝑡, 𝑟′) (by def. of split)

= ∑
𝑟∈runℳ(𝑡)

∑
𝑞′∈split(𝑟(𝜀))

𝐼′(𝑞′) ⋅ ∑
𝑟′∈split(𝑟):

𝑟′(𝜀)=𝑞′

⟦ℳ′⟧(𝑡, 𝑟′) (by distributivity)

= ∑
𝑟∈runℳ(𝑡)

∑
𝑞′∈split(𝑟(𝜀))

𝐼′(𝑞′) ⋅ ⟦ℳ⟧(𝑡, 𝑟) (by Lemma 5.1.4)

= ∑
𝑟∈runℳ(𝑡)

( ∑
𝑞′∈split(𝑟(𝜀))

𝐼′(𝑞′)) ⋅ ⟦ℳ⟧(𝑡, 𝑟) (by distributivity)

= ∑
𝑟∈runℳ(𝑡)

𝐼(𝑟(𝜀)) ⋅ ⟦ℳ⟧(𝑡, 𝑟) (by def. of proper split)

= ⟦ℳ⟧(𝑡) (by def. of ⟦…⟧)

q.e.d.

Lemma 5.1.6. Let ℳ′ be a ℙ-wta, let 𝜋 be an ℳ′-merger, and let 𝜆 be a 𝜋-distributor. If ℳ′

is semi-probabilistic, then also merge𝜆
𝜋(ℳ′) is semi-probabilistic.

Proof. Let (𝑄′, 𝛴, 𝐼′, 𝛥′) = ℳ′ and let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) = merge𝜆
𝜋(ℳ′). Assume that ℳ′

is semi-probabilistic. Then we have

∑
𝑞∈𝑄

𝐼(𝑞) = ∑
𝑞∈𝑄

∑
𝑞′∈split𝜋(𝑞)

𝐼′(𝑞′) = ∑
𝑞′∈𝑄′

𝐼′(𝑞′) = 1

introduced on page 69

introduced on page 70
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where the equations hold by def. of merge𝜆
𝜋 since 𝜋 is surjective and since ℳ′ is semi-proba-

bilistic, respectively. Also, for every 𝑞 ∈ 𝑄 we have

∑
𝑘∈ℕ,

𝜎∈𝛴(𝑘),
𝑞1,…,𝑞𝑘∈𝑄

𝛥(𝑞 → 𝜎(𝑞1, …, 𝑞𝑘))

= ∑
𝑘∈ℕ,

𝜎∈𝛴(𝑘),
𝑞1,…,𝑞𝑘∈𝑄

∑
𝑞′∈split𝜋(𝑞),

𝑞′
1∈split𝜋(𝑞1),

…,
𝑞′

𝑘∈split𝜋(𝑞𝑘)

𝜆(𝑞′) ⋅ 𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) (by def. of merge𝜆
𝜋)

= ∑
𝑞′∈split𝜋(𝑞)

∑
𝑘∈ℕ,

𝜎∈𝛴(𝑘)

∑
𝑞1∈𝑄,

𝑞′
1∈split𝜋(𝑞1)

… ∑
𝑞𝑘∈𝑄,

𝑞′
𝑘∈split𝜋(𝑞𝑘)

𝜆(𝑞′) ⋅ 𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘))
(by associativity and commutativity)

= ∑
𝑞′∈split𝜋(𝑞)

∑
𝑘∈ℕ,

𝜎∈𝛴(𝑘)

∑
𝑞′

1∈𝑄′

… ∑
𝑞′

𝑘∈𝑄′

𝜆(𝑞′) ⋅ 𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) (since 𝜋 is surjective)

= ∑
𝑞′∈split𝜋(𝑞)

𝜆(𝑞′) ⋅ ∑
𝑘∈ℕ,

𝜎∈𝛴(𝑘)

∑
𝑞′

1∈𝑄′

… ∑
𝑞′

𝑘∈𝑄′

𝛥′(𝑞′ → 𝜎(𝑞′
1, …, 𝑞′

𝑘)) (by distributivity)

= ∑
𝑞′∈split𝜋(𝑞)

𝜆(𝑞′) ⋅ 1 (since ℳ′ is semi-probabilistic)

= 1. (by def. of 𝜋-distributor 𝜆)

Hence, also ℳ is semi-probabilistic. q.e.d.

Theorem 5.1.7. Let ℳ1 = (𝑄1, 𝛴, 𝐼1, 𝛥1) be a ℙ-wta, 𝜋1 an ℳ1-merger, 𝜆1 a 𝜋1-distributor;
let ℳ2 = merge𝜆1

𝜋1
(ℳ1), 𝜋2 a ℳ2-merger, and 𝜆2 a 𝜋2-distributor. Let 𝜋 = 𝜋2 ∘ 𝜋1, and con-

struct 𝜆 such that 𝜆(𝑞) = 𝜆1(𝑞) ⋅ 𝜆2(𝜋1(𝑞)) for every 𝑞 ∈ 𝑄1. Then merge𝜆2
𝜋2

(merge𝜆1
𝜋1

(ℳ1)) =
merge𝜆2

𝜋2
(ℳ2) = merge𝜆

𝜋(ℳ1).

Proof. Let
• ℳ2 = (𝑄2, 𝛴, 𝐼2, 𝛥2) = merge𝜆1

𝜋1
(ℳ1) and

• ℳ3 = (𝑄3, 𝛴, 𝐼3, 𝛥3) = merge𝜆2
𝜋2

(ℳ2).
Then for every 𝑞3 ∈ 𝑄3 we have

𝐼3(𝑞3) = ∑
𝑞2∈split𝜋2

(𝑞3)
𝐼2(𝑞2) (by def. of 𝐼3)

= ∑
𝑞2∈split𝜋2

(𝑞3)
∑

𝑞1∈split𝜋1
(𝑞2)

𝐼1(𝑞1) (by def. of 𝐼2)

= ∑
𝑞1∈split𝜋2∘𝜋1

(𝑞3)
𝐼1(𝑞1) (by def. of split and ∘)
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Also, for every transition 𝜏3 ∈ dom(𝛥3) we have

𝛥3(𝜏3)
= ∑

𝜏2∈split𝜋2
(𝜏3)

𝜆2(lhs(𝜏2)) ⋅ 𝛥2(𝜏2) (by def. of 𝛥3)

= ∑
𝜏2∈split𝜋2

(𝜏3)
𝜆2(lhs(𝜏2)) ⋅ ∑

𝜏1∈split𝜋1
(𝜏2)

𝜆1(lhs(𝜏1)) ⋅ 𝛥1(𝜏1) (by def. of 𝛥2)

= ∑
𝜏2∈split𝜋2

(𝜏3),
𝜏1∈split𝜋1

(𝜏2)

𝜆2(lhs(𝜏2)) ⋅ 𝜆1(lhs(𝜏1)) ⋅ 𝛥1(𝜏1) (by distributivity)

= ∑
𝜏2∈split𝜋2

(𝜏3),
𝜏1∈split𝜋1

(𝜏2)

𝜆2(𝜋1(lhs(𝜏1))) ⋅ 𝜆1(lhs(𝜏1)) ⋅ 𝛥1(𝜏1) (by def. of 𝜏1)

= ∑
𝜏1∈split𝜋2∘𝜋1

(𝜏3)
𝜆(lhs(𝜏1)) ⋅ 𝛥1(𝜏1). (by def. of 𝜆, split and ∘)

Hence, merge𝜆2
𝜋2

(merge𝜆1
𝜋1

(ℳ1)) = merge𝜆
𝜋(ℳ1). q.e.d.

Theorem 5.2.4. Let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be a probabilistic ℙ-wta and 𝜋 an ℳ′-merger. Let
ℳ̂ be the probabilistic 𝜋-merge of ℳ′ that minimizes the cross-entropy w.r.t. runs of ℳ̂, i.e.,

ℳ̂ = argmin
wta ℳ such that :

ℳ is a 𝜋-merge of ℳ′,
ℳ is probabilistic

Hrunℳ
(⟦ℳ′⟧I𝜋 ∥ ⟦ℳ⟧I).

Then ℳ̂ = merge𝜆
𝜋(ℳ′) where 𝜆 is the 𝜋-distributor such that

∀𝑞′ ∈ 𝑄′ : 𝜆(𝑞′) =
E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

∑𝑞″∈split𝜋(merge𝜋(𝑞′)) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞″ ∣ 𝑡, 𝑟′))
.

Proof. To ease the notation in sum indices in this proof, we will just write split instead of split𝜋.
Let (𝑄, 𝛴, ̂𝐼, ̂𝛥) = ℳ̂. For every (𝑞 → 𝜉) ∈ dom( ̂𝛥) we have:

̂𝛥(𝑞 → 𝜉)

=
E⟦ℳ′⟧I𝜋(𝜆(𝑡, 𝑟). f(𝑞 → 𝜉 ∣ 𝑡, 𝑟))
E⟦ℳ′⟧I𝜋(𝜆(𝑡, 𝑟). f(𝑞 ∣ 𝑡, 𝑟))

(by Lemma 4.6.3)

=
∑(𝑡,𝑟)∈runℳ

⟦ℳ′⟧I𝜋(𝑡, 𝑟) ⋅ f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)
∑(𝑡,𝑟)∈runℳ

⟦ℳ′⟧I𝜋(𝑡, 𝑟) ⋅ f(𝑞 ∣ 𝑡, 𝑟)
(by def. of E)

=
∑(𝑡,𝑟)∈runℳ

(∑𝑟′∈split(𝑟)⟦ℳ
′⟧I(𝑡, 𝑟′)) ⋅ f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)

∑(𝑡,𝑟)∈runℳ
(∑𝑟′∈split(𝑟)⟦ℳ

′⟧I(𝑡, 𝑟′)) ⋅ f(𝑞 ∣ 𝑡, 𝑟)
(by Equation (5.1))
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=
∑(𝑡,𝑟)∈runℳ

∑𝑟′∈split(𝑟)⟦ℳ
′⟧I(𝑡, 𝑟′) ⋅ f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)

∑(𝑡,𝑟)∈runℳ
∑𝑟′∈split(𝑟)⟦ℳ

′⟧I(𝑡, 𝑟′) ⋅ f(𝑞 ∣ 𝑡, 𝑟)
(by distributivity)

=
∑(𝑡,𝑟)∈runℳ

∑𝑟′∈split(𝑟)⟦ℳ
′⟧I(𝑡, 𝑟′) ⋅ ∑(𝑞′→𝜉′)∈split(𝑞→𝜉) f(𝑞

′ → 𝜉′ ∣ 𝑡, 𝑟′)
∑(𝑡,𝑟)∈runℳ

∑𝑟′∈split(𝑟)⟦ℳ
′⟧I(𝑡, 𝑟′) ⋅ ∑𝑞′∈split(𝑞) f(𝑞′ ∣ 𝑡, 𝑟′)

(by def. of f and split)

=
∑(𝑡,𝑟′)∈runℳ′

⟦ℳ′⟧I(𝑡, 𝑟′) ⋅ ∑(𝑞′→𝜉′)∈split(𝑞→𝜉) f(𝑞
′ → 𝜉′ ∣ 𝑡, 𝑟′)

∑(𝑡,𝑟′)∈runℳ′
⟦ℳ′⟧I(𝑡, 𝑟′) ⋅ ∑𝑞′∈split(𝑞) f(𝑞′ ∣ 𝑡, 𝑟′)

(by def. of split and surjectivity of 𝜋)

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) ∑(𝑡,𝑟′)∈runℳ′

⟦ℳ′⟧I(𝑡, 𝑟′) ⋅ f(𝑞′ → 𝜉′ ∣ 𝑡, 𝑟′)

∑𝑞′∈split(𝑞) ∑(𝑡,𝑟′)∈runℳ′
⟦ℳ′⟧I(𝑡, 𝑟′) ⋅ f(𝑞′ ∣ 𝑡, 𝑟′)
(by distributivity, associativity, and commutativity)

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ → 𝜉′ ∣ 𝑡, 𝑟′))
∑𝑞′∈split(𝑞) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

(by def. of E)

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) 𝛥′(𝑞′ → 𝜉′) ⋅ E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))
∑𝑞′∈split(𝑞) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

(by Lemma 4.6.4)

=
∑𝑞′∈split(𝑞)(∑𝜉′∈split(𝜉) 𝛥′(𝑞′ → 𝜉′)) ⋅ E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))
∑𝑞′∈split(𝑞) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

(by def. of split, commutativity, and distributivity)

= ∑
𝑞′∈split(𝑞)

( ∑
𝜉′∈split(𝜉)

𝛥′(𝑞′ → 𝜉′)) ⋅
E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞′ ∣ 𝑡, 𝑟′))

∑𝑞″∈split(𝑞) E⟦ℳ′⟧I(𝜆(𝑡, 𝑟′). f(𝑞″ ∣ 𝑡, 𝑟′))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜆(𝑞′)

(by distributivity)

The last line resembles the definition for the transition weights of merge𝜆
𝜋(ℳ′) (cf. Sec-

tion 5.1.2), where the curly brace indicates the 𝜋-distributor 𝜆 as defined in the theorem.
For every 𝑞 ∈ 𝑄, one can transform ̂𝐼(𝑞) analogously, leading to the definition of the root

weights of merge𝜆
𝜋(ℳ′). Hence, ℳ̂ = merge𝜆

𝜋(ℳ′). q.e.d.

Theorem 5.2.5 (EM distributor). Let ℳ′ = (𝑄′, 𝛴, 𝐼′, 𝛥′) be a probabilistic ℙ-wta and 𝜋 an
ℳ′-merger. Let 𝑐 be a corpus over T𝛴, and let 𝑝𝑐 be the empirical distribution of 𝑐. Let ℳ be
a 𝜋-merge of ℳ′.
If ℳ′ is an EM fixpoint w.r.t. 𝑐, then EMStep⟦ℳ′⟧I𝜋

𝑐 (ℳ) = merge𝜆
𝜋(ℳ′) where 𝜆 is the

𝜋-distributor such that

∀𝑞′ ∈ 𝑄′ : 𝜆(𝑞′) =
E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
∑𝑞″∈split𝜋(merge𝜋(𝑞′)) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧(⋅∣𝑡)(𝜆𝑟′. f(𝑞″ ∣ 𝑡, 𝑟′)))
.
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C. Proofs for State Splitting and Merging

Proof. In the following equations we will write split instead of split𝜋. Let (𝑄, 𝛴, 𝐼, 𝛥) =
EMStep⟦ℳ′⟧I𝜋

𝑐 (ℳ). For every (𝑞 → 𝜉) ∈ dom(𝛥) we have:

𝛥(𝑞 → 𝜉)

=
E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I𝜋(⋅∣𝑡)(𝜆𝑟. f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)))
E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I𝜋(⋅∣𝑡)(𝜆𝑟. f(𝑞 ∣ 𝑡, 𝑟)))
(Definition 4.6.5)

=
∑𝑡∈T𝛴

𝑝𝑐(𝑡) ⋅ ∑𝑟∈im(runℳ)⟦ℳ
′⟧I𝜋(𝑟 ∣ 𝑡) ⋅ f(𝑞 → 𝜉 ∣ 𝑡, 𝑟)

∑𝑡∈T𝛴
𝑝𝑐(𝑡) ⋅ ∑𝑟∈im(runℳ)⟦ℳ

′⟧I𝜋(𝑟 ∣ 𝑡) ⋅ f(𝑞 ∣ 𝑡, 𝑟)
(by def. of E)

=
∑𝑡∈T𝛴

𝑝𝑐(𝑡) ⋅ ∑𝑟′∈im(runℳ′)⟦ℳ
′⟧I(𝑟′ ∣ 𝑡) ⋅ ∑(𝑞′→𝜉′)∈split(𝑞→𝜉) f(𝑞

′ → 𝜉′ ∣ 𝑡, 𝑟′)

∑𝑡∈T𝛴
𝑝𝑐(𝑡) ⋅ ∑𝑟′∈im(runℳ′)⟦ℳ

′⟧I(𝑟′ ∣ 𝑡) ⋅ ∑𝑞′∈split(𝑞) f(𝑞′ ∣ 𝑡, 𝑟′)
(by Equation (5.1), distributivity, and def. of f and split; similar in proof of Theorem 5.2.4)

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) ∑𝑡∈U𝛴

𝑝𝑐(𝑡) ⋅ ∑𝑟′∈im(runℳ′)⟦ℳ
′⟧I(𝑟′ ∣ 𝑡) ⋅ f(𝑞′ → 𝜉′ ∣ 𝑡, 𝑟′)

∑𝑞′∈split(𝑞) ∑𝑡∈U𝛴
𝑝𝑐(𝑡) ⋅ ∑𝑟′∈im(runℳ′)⟦ℳ

′⟧I(𝑟′ ∣ 𝑡) ⋅ f(𝑞′ ∣ 𝑡, 𝑟′)
(by distributivity, associativity, and commutativity)

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ → 𝜉′ ∣ 𝑡, 𝑟′)))
∑𝑞′∈split(𝑞) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
(by def. of E)

If ℳ′ is an EM fixpoint, then we have 𝛥′(𝑞′ → 𝜉′) = E𝑝𝑐(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′→𝜉′∣𝑡,𝑟′)))
E𝑝𝑐(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣𝑡,𝑟′))) for every

(𝑞′ → 𝜉′) ∈ dom(𝛥′) (cf. Definition 4.6.5). Hence, we can proceed as follows:

=
∑(𝑞′→𝜉′)∈split(𝑞→𝜉) 𝛥′(𝑞′ → 𝜉′) ⋅ E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
∑𝑞′∈split(𝑞) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))

=
∑𝑞′∈split(𝑞)(∑𝜉′∈split(𝜉) 𝛥′(𝑞′ → 𝜉′)) ⋅ E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
∑𝑞′∈split(𝑞) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
(by def. of split, commutativity, and distributivity)

= ∑
𝑞′∈split(𝑞)

( ∑
𝜉′∈split(𝜉)

𝛥′(𝑞′ → 𝜉′)) ⋅
E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞′ ∣ 𝑡, 𝑟′)))
∑𝑞″∈split(𝑞) E𝑝𝑐

(𝜆𝑡.E⟦ℳ′⟧I(⋅∣𝑡)(𝜆𝑟′. f(𝑞″ ∣ 𝑡, 𝑟′)))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜆(𝑞′)

(by distributivity)

The last line resembles the definition for the transition weights of merge𝜆
𝜋(ℳ′) (cf. Sec-

tion 5.1.2), where the curly brace indicates the 𝜋-distributor 𝜆 as defined in the theorem.
For every 𝑞 ∈ 𝑄, one can transform 𝐼(𝑞) analogously, leading to the definition of the root

weights of merge𝜆
𝜋(ℳ′). Hence, EMStep⟦ℳ′⟧I𝜋

𝑐 (ℳ) = (𝑄, 𝛴, 𝐼, 𝛥) = merge𝜆
𝜋(ℳ′). q.e.d.
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D. Proofs for Count-Based State Merging

Theorem 6.1.6. Let 𝛴 be a ranked alphabet, 𝐶 ⊆ T𝛴 a finite, non-empty set, and ℳ𝐶 the
canonical 𝔹-wta of 𝐶. Then for every 𝐶-restricted, bottom-up deterministic 𝔹-wta ℳ with the
terminal alphabet 𝛴 such that 𝐶 ⊆ ⟦ℳ⟧ there is an ℳ𝐶-merger 𝜋 such that

ℳ = 𝜋(ℳ𝐶).

Proof. Let 𝜋 be the ℳ𝐶-merger such that 𝜋(𝑡) = r𝑡
ℳ(𝜀) for every 𝑡 ∈ subs(𝐶). We now prove

that ℳ = 𝜋(ℳ𝐶). For that purpose let (𝑄, 𝛴, 𝐼, 𝛥) = ℳ and (𝑄𝐶, 𝛴, 𝐼𝐶, 𝛥𝐶) = ℳ𝐶.
Since𝐶 ⊆ ⟦ℳ⟧, it is easy to see that 𝜋(r𝑡

ℳ𝐶
) = r𝑡

ℳ for every 𝑡 ∈ subs(𝐶). This immediately
proves that 𝑄 ⊇ 𝜋(𝑄𝐶), 𝐼 ⊇ 𝜋(𝐼𝐶), and 𝛥 ⊇ 𝜋(𝛥𝐶). We now show the other direction of
the inclusions.

𝑄 ⊆ 𝜋(𝑄𝐶): Assume there is a state 𝑞 ∈ 𝑄 such that 𝑞 ∉ 𝜋(𝑄𝐶). Since ℳ is 𝐶-restricted
and bottom-up deterministic, there is a tree 𝑡 ∈ 𝐶 such that ⟦ℳ⟧(𝑡, r𝑡

ℳ) ≠ 0 and there is a
position 𝜌 ∈ pos(𝑡) such that r𝑡

ℳ(𝜌) = 𝑞. Because of bottom-up determinism, we also have
r𝑡
ℳ|𝜌 = r𝑡|𝜌

ℳ. Since 𝑡|𝜌 is a state of ℳ𝐶, we have 𝑞 = r𝑡|𝜌
ℳ(𝜀) = 𝜋(𝑡|𝜌), which contradicts the

assumption that 𝑞 ∉ 𝜋(𝑄𝐶).
𝐼 ⊆ 𝜋(𝐼𝐶): Assume there is a state 𝑞 ∈ 𝐼 such that 𝑞 ∉ 𝜋(𝐼𝐶). Since ℳ is 𝐶-restricted and

bottom-up deterministic, there is a tree 𝑡 ∈ 𝐶 such that ⟦ℳ⟧(𝑡, r𝑡
ℳ) ≠ 0 and r𝑡

ℳ(𝜀) = 𝑞.
Hence, 𝑞 = r𝑡

ℳ(𝜀) = 𝜋(𝑡) and since ℳ𝐶 is the canonical 𝔹-wta, we have 𝑡 ∈ 𝐼𝐶, which
contradicts 𝑞 ∉ 𝜋(𝐼𝐶).

𝛥 ⊆ 𝜋(𝛥𝐶): Assume there is a transition 𝜏 ∈ 𝛥 such that 𝜏 ∉ 𝜋(𝛥𝐶). Since ℳ is
𝐶-restricted and bottom-up deterministic, there is a tree 𝑡 ∈ 𝐶 and a position 𝜌 ∈ pos(𝑡)
such that ⟦ℳ⟧(𝑡, r𝑡

ℳ) ≠ 0 and trans𝜌(𝑡, r𝑡
ℳ) = 𝜏. Because of bottom-up determinism, we also

have r𝑡
ℳ|𝜌 = r𝑡|𝜌

ℳ = 𝜋(𝑡|𝜌) and r𝑡
ℳ|𝜌𝑖 = r𝑡|𝜌𝑖

ℳ = 𝜋(𝑡|𝜌𝑖) for every 𝑖 ∈ [rk(𝑡(𝜌))]. Therefore
𝜏 = 𝜋(trans𝜌(𝑡, r𝑡

ℳ𝐶
)), which contradicts 𝜏 ∉ 𝜋(𝛥𝐶). q.e.d.

Conjecture 6.2.2. Let ℳ be a 𝔹-wta, 𝜋 an ℳ-merger, and 𝑐 a corpus such that supp(𝑐) ⊆ ⟦ℳ⟧.
If ℳ and 𝜋(ℳ) are bottom-up deterministic, then

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) ≥ L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧).

We tried to prove the conjecture as well as we tried to refute it by a counter example. Unfor-
tunately we had no success on any of the two sides. We now list some observations that made
a proof hard for us.

• The first proof idea that may come to mind is to show for every 𝑡 ∈ supp(𝑐) that
⟦mle𝑐(ℳ)⟧(𝑡) ≥ ⟦mle𝑐(𝜋(ℳ))⟧(𝑡), which by the definition of the likelihood would
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prove the conjecture. Unfortunately this is not possible. We were able to find an ex-
ample for 𝑐 and ℳ where ⟦mle𝑐(ℳ)⟧(𝑡1) ≥ ⟦mle𝑐(𝜋(ℳ))⟧(𝑡1), but ⟦mle𝑐(ℳ)⟧(𝑡2) <
⟦mle𝑐(𝜋(ℳ))⟧(𝑡2) for some 𝑡1, 𝑡2 ∈ supp(𝑐): Consider the following bottom-up deter-
ministic ℙ-wta ℳ.

2/3⟶ 𝑞𝛼 𝑞𝛼
3/5⟶ 𝛾(𝑞𝛼) 𝑞𝛽

1/2⟶ 𝛾(𝑞𝛽)
1/3⟶ 𝑞𝛽 𝑞𝛼

2/5⟶ 𝛼 𝑞𝛽
1/2⟶ 𝛽.

Let 𝑐 be the corpus where 𝑐(𝛾(𝛾(𝛼))) = 1, 𝑐(𝛾(𝛼)) = 1, 𝑐(𝛾(𝛽)) = 1, and everything
else is mapped to zero. Note that ℳ = mle𝑐(ℳ). Now consider the ℳ-merger 𝜋 where
𝜋(𝑞𝛼) = 𝜋(𝑞𝛽) = 𝑞. Then mle𝑐(𝜋(ℳ)) is equal to:

1⟶ 𝑞 𝑞 4/7⟶ 𝛾(𝑞) 𝑞 2/7⟶ 𝛼 𝑞 1/7⟶ 𝛽.

Now let us look at the likelihoods of 𝑐 under the two wtas.

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) = 4
3125⏟

0.00128

= 12
125⏟

0.096

⋅ 4
25⏟

0.16

⋅ 1
12⏟

0.083> > < >

L(𝑐 ∣ ⟦mle𝑐(𝜋(ℳ))⟧) =
0.00124…
⏞1024
823543 =

0.092…
⏞32
343 ⋅

0.163…
⏞8
49 ⋅

0.081…
⏞4
49 .

The factors equal the weights of the trees 𝛾(𝛾(𝛼)), 𝛾(𝛼), and 𝛾(𝛽), respectively. As we
can see, the second tree has a higher weight under 𝜋(ℳ), yet the overall likelihood is
smaller with 𝜋(ℳ).

• The three corpora 𝑐Δℳ, 𝑐Qℳ and 𝑐Iℳ depend on a bottom-up deterministic wta ℳ. When
we choose the values for these corpora arbitrarily, i.e., independently from a wta, then
we are able to construct a counter example. But we were not able to find a bottom-up
deterministic wta ℳ that induces such corpus values. Therefore we assume that a proof
has to exploit properties that arise from the dependence of these corpora on a bottom-up
deterministic wta.

Lemma 6.2.3 (Dietze and Nederhof [DN15, Equation 2]). Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a bottom-
up deterministic 𝔹-wta and 𝑐 a corpus over T𝛴 such that supp(𝑐) ⊆ ⟦ℳ⟧. Then we have

L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) =
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

|𝑐||𝑐| ·
∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ

ℳ(𝜏)

∏𝑞∈𝑄 𝑐Qℳ(𝑞)
𝑐Q

ℳ(𝑞)
.

Proof. We prove the lemma by transforming the left-hand side of the equation into its right-
hand side. For that purpose let 𝒩 = (𝑄, 𝛴, 𝐽, 𝛬) = mle𝑐(ℳ) and assume that 00 = 1.
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L(𝑐 ∣ ⟦mle𝑐(ℳ)⟧) = L(𝑐 ∣ ⟦𝒩⟧)

= ∏
𝑡∈supp(𝑐)

⟦𝒩⟧(𝑡)𝑐(𝑡) (def. of L)

= ∏
𝑡∈supp(𝑐)

( ∑
𝑟∈run𝒩(𝑡)

⟦𝒩⟧(𝑡, 𝑟))
𝑐(𝑡)

(def. of ⟦𝒩⟧)

= ∏
𝑡∈supp(𝑐)

⟦𝒩⟧(𝑡, r𝑡
𝒩)𝑐(𝑡) (assumptions for ℳ and 𝑐)

= ∏
𝑡∈supp(𝑐)

⟦𝒩⟧(𝑡, r𝑡
ℳ)𝑐(𝑡) (r𝑡

𝒩 = r𝑡
ℳ for every 𝑡 ∈ supp(𝑐))

= ∏
𝑡∈supp(𝑐)

(𝐽(r𝑡
ℳ(𝜀)) · ∏

𝜌∈pos(𝑡)
𝛬(trans𝜌(𝑡, r𝑡

ℳ)))
𝑐(𝑡)

(def. of ⟦𝒩⟧)

= ∏
𝑡∈supp(𝑐)

𝐽(r𝑡
ℳ(𝜀))𝑐(𝑡) · ∏

𝜌∈pos(𝑡)
𝛬(trans𝜌(𝑡, r𝑡

ℳ)𝑐(𝑡) (distributivity)

= ( ∏
𝑡∈supp(𝑐)

𝐽(r𝑡
ℳ(𝜀))𝑐(𝑡)) · ∏

𝑡∈supp(𝑐)
∏

𝜌∈pos(𝑡)
𝛬(trans𝜌(𝑡, r𝑡

ℳ)𝑐(𝑡) (commutativity)

= (∏
𝑞∈𝑄

∏
𝑡∈supp(𝑐):
𝑞=r𝑡ℳ(𝜀)

𝐽(𝑞)𝑐(𝑡)) · ∏
𝜏∈dom(𝛥)

∏
𝑡∈supp(𝑐)

∏
𝜌∈pos(𝑡) :

𝜏=trans𝜌(𝑡,r𝑡ℳ)

𝛬(𝜏)𝑐(𝑡)

(commutativity, dom(𝛬) = dom(𝛥))

= (∏
𝑞∈𝑄

𝐽(𝑞)
∑𝑡∈supp(𝑐):

𝑞=r𝑡ℳ(𝜀)
𝑐(𝑡)

) · ∏
𝜏∈dom(𝛥)

𝛬(𝜏)
∑𝑡∈supp(𝑐) ∑ 𝜌∈pos(𝑡):

𝜏=trans𝜌(𝑡,r𝑡ℳ)
𝑐(𝑡)

(𝑏𝑐 · 𝑏𝑑 = 𝑏𝑐+𝑑, 00 = 1)

= (∏
𝑞∈𝑄

𝐽(𝑞)𝑐I
ℳ(𝑞)) · ∏

𝜏∈dom(𝛥)
𝛬(𝜏)∑𝑡∈supp(𝑐) 𝑐(𝑡)·|{𝜌∈pos(𝑡)∣𝜏=trans𝜌(𝑡,r𝑡ℳ)}|

(def. of 𝑐Iℳ, distributivity)

= (∏
𝑞∈𝑄

𝐽(𝑞)𝑐I
ℳ(𝑞)) · ∏

𝜏∈dom(𝛥)
𝛬(𝜏)𝑐Δ

ℳ(𝜏) (def. of 𝑐Δℳ)

= (∏
𝑞∈𝑄

𝐽(𝑞)𝑐I
ℳ(𝑞)) · ∏

𝜏∈supp(𝛥)
𝛬(𝜏)𝑐Δ

ℳ(𝜏) (𝜏 ∉ supp(𝛥) ⟹ 𝑐Δℳ(𝜏) = 0)

=
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

∏𝑞∈𝑄 |𝑐|𝑐
I
ℳ(𝑞) ·

∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ
ℳ(𝜏)

∏𝜏∈supp(𝛥) 𝑐Qℳ(lhs(𝜏))
𝑐Δ

ℳ(𝜏) (by Theorem 6.1.4, comm., distr.)

=
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

∏𝑞∈𝑄 |𝑐|𝑐
I
ℳ(𝑞) ·

∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ
ℳ(𝜏)

∏𝑞∈𝑄 ∏𝜏∈supp(𝛥): lhs(𝜏)=𝑞 𝑐Qℳ(𝑞)
𝑐Δ

ℳ(𝜏) (comm.)
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=
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

|𝑐|∑𝑞∈𝑄 𝑐I
ℳ(𝑞) ·

∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ
ℳ(𝜏)

∏𝑞∈𝑄 𝑐Qℳ(𝑞)
∑𝜏∈supp(𝛥): lhs(𝜏)=𝑞 𝑐Δ

ℳ(𝜏) (𝑏𝑐 · 𝑏𝑑 = 𝑏𝑐+𝑑)

=
∏𝑞∈𝑄 𝑐Iℳ(𝑞)𝑐I

ℳ(𝑞)

|𝑐||𝑐| ·
∏𝜏∈supp(𝛥) 𝑐Δℳ(𝜏)𝑐Δ

ℳ(𝜏)

∏𝑞∈𝑄 𝑐Qℳ(𝑞)
𝑐Q

ℳ(𝑞)
(def. of 𝑐Iℳ and 𝑐Qℳ (cf. Equation (6.1))

This concludes our proof. q.e.d.

Lemma 6.3.2. Let 𝐴 and 𝐵 be sets, 𝑙 : 𝐴 → ℝ a mapping, 𝑤 ⊆ 𝐵 × 𝐴 a relation such that
𝑤(𝐵) = 𝐴 and 𝑤(𝑏) ≠ ∅ for every 𝑏 ∈ 𝐵, and let 𝑚 ⊆ 𝑤 be the relation such that 𝑚(𝑏) =
argmax𝑎∈𝑤(𝑏) 𝑙(𝑎) for every 𝑏 ∈ 𝐵. Then we have

𝑚(argmax
𝑏∈𝐵

𝑙(𝑚(𝑏))) = argmax
𝑎∈𝐴

𝑙(𝑎).

Proof. Note that 𝑙(𝑚(𝑏)) = 𝑙(𝑙−1(max 𝑙(𝑤(𝑏)))) = max 𝑙(𝑤(𝑏)). We transform the left-hand
side of the lemma’s equation into its right-hand side.

𝑚(argmax
𝑏∈𝐵

𝑙(𝑚(𝑏)))

= 𝑚({𝑏 ∈ 𝐵 ∣ 𝑙(𝑚(𝑏)) = max 𝑙(𝑚(𝐵))})
= 𝑚({𝑏 ∈ 𝐵 ∣ 𝑙(𝑚(𝑏)) = max{𝑙(𝑚(𝑏)) ∣ 𝑏 ∈ 𝐵}})
= 𝑚({𝑏 ∈ 𝐵 ∣ max 𝑙(𝑤(𝑏)) = max{max 𝑙(𝑤(𝑏)) ∣ 𝑏 ∈ 𝐵}})
= 𝑚({𝑏 ∈ 𝐵 ∣ max 𝑙(𝑤(𝑏)) = max 𝑙(𝑤(𝐵))})
= 𝑚({𝑏 ∈ 𝐵 ∣ max 𝑙(𝑤(𝑏)) = max 𝑙(𝐴)})
= 𝑙−1(max 𝑙(𝑤({𝑏 ∈ 𝐵 ∣ max 𝑙(𝑤(𝑏)) = max 𝑙(𝐴)})))
= 𝑙−1(max 𝑙(𝐴))
= argmax

𝑎∈𝐴
𝑙(𝑎) q.e.d.

Lemma 6.3.6. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a 𝔹-wta, and let (≡) be an equivalence relation over
𝑄. Then there is a least (i.e. unique minimal) equivalence relation (≡̂) such that (≡) ⊆ (≡̂) and
π≡̂(ℳ) is bottom-up deterministic.

Proof. Existence: Consider (≡′) = 𝑄 × 𝑄, i.e., 𝑞1 ≡′ 𝑞2 for every 𝑞1, 𝑞2 ∈ 𝑄. Then (≡) ⊆
(≡′) and π≡′(ℳ) is bottom-up deterministic. Now either (≡′) is minimal or there is another
equivalence relation that is minimal because there are only finitely many equivalence relations
over 𝑄.

Uniqueness: Assume there is a minimal (≡′) ≠ (≡̂) satisfying the conditions. Then, by
Lemma D.0.1 (see below), (≡′) ∩ (≡̂) would also satisfy the conditions, which contradicts that
(≡′) and (≡̂) are minimal. Hence, (≡̂) is unique. q.e.d.

Lemma D.0.1. Let ℳ = (𝑄, 𝛴, 𝐼, 𝛥) be a 𝔹-wta, and let (≡1) and (≡2) be equivalence
relations over 𝑄 such that π≡1

(ℳ) and π≡2
(ℳ) are bottom-up deterministic. Let (≡) =

(≡1) ∩ (≡2). Then also π≡(ℳ) is bottom-up deterministic.
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Proof. Assume π≡(ℳ) is not bottom-up deterministic. Then there are two transitions 𝑝0 →
𝜎(𝑝1, …, 𝑝rk(𝜎)) and 𝑞0 → 𝜎(𝑞1, …, 𝑞rk(𝜎)) in supp(𝛥) such that 𝑝𝑖 ≡ 𝑞𝑖 for every 1 ≤ 𝑖 ≤
rk(𝜎), but 𝑝0 ≢ 𝑞0. Hence, 𝑝𝑖 ≡1 𝑞𝑖 and 𝑝𝑖 ≡2 𝑞𝑖 for every 1 ≤ 𝑖 ≤ rk(𝜎), and therefore
𝑝0 ≡1 𝑞0 and 𝑝0 ≡2 𝑞0. This implies 𝑝0 ≡ 𝑞0, which is a contradiction so π≡(ℳ) is bottom-up
deterministic. q.e.d.

Lemma 6.3.7. For positive arguments, the following function is strictly monotonically decreasing:

𝑓(𝑥, 𝑦) = 𝑥𝑥 · 𝑦𝑦

(𝑥 + 𝑦)𝑥+𝑦 .

Proof. To make it easier to derive 𝑓, we transform the definition as follows:

𝑓(𝑥, 𝑦) = 𝑥𝑥 · 𝑦𝑦

(𝑥 + 𝑦)𝑥+𝑦 = ( 𝑥
𝑥 + 𝑦

)
𝑥

· ( 𝑦
𝑥 + 𝑦

)
𝑦
.

For positive arguments, the partial derivatives of 𝑓 are

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= ln( 𝑥
𝑥 + 𝑦

) · ( 𝑥
𝑥 + 𝑦

)
𝑥

· ( 𝑦
𝑥 + 𝑦

)
𝑦
, and

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

= ln( 𝑦
𝑥 + 𝑦

) · ( 𝑥
𝑥 + 𝑦

)
𝑥

· ( 𝑦
𝑥 + 𝑦

)
𝑦
.

For 𝑥, 𝑦 > 0 the fractions are smaller than one. This means the logarithms are negative, hence
the whole terms. So 𝑓 is monotonically decreasing. q.e.d.
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Table of Variable Names

In this work we try to use specific variable names only with specific meanings. The following
table lists the usual meaning of symbols we use. Sometimes we also add primes or indices to
these symbols. Occasionally you might encounter exceptions from the listed meanings.

symbol meaning

𝛴, 𝛤 alphabet (unranked, ranked, or sorted)
𝛼, 𝛽, 𝛾, 𝜎 symbol from an alphabet
𝑤 string
𝑡 tree (unranked, ranked, or sorted)
𝜌 position in a tree
𝑐 context or corpus
ℛ semiring, usually commutative
𝑆 set of sorts
𝑠 sort

ℳ weighted tree automaton (wta), weighted sorted tree automaton (wsta), or
weighted unranked tree automaton (wuta)

𝑄 set of states of a wta/wsta/wuta
𝑞 state of a wta/wsta/wuta
𝐼 root weights of a wta/wsta/wuta, initial weights of a wcfg-la, or index set
𝛥 transition weights of a wta/wsta/wuta
𝜏 transition of a wta
𝜉 right-hand side of a wta/wsta/wuta transition

𝒩 weighted string automaton (wsa)
𝑃 set of rules of a wcfg-la or set of states of a wsa
𝐽 initial weights of a wsa or index set
𝛱 transition weights of a wsa

𝐺 weighted context-free grammar with latent annotations (wcfg-la)
𝑁 alphabet of non-terminals of a wcfg-la
𝐻 alphabet of latent annotations of a wcfg-la
𝐼 initial weights of a wcfg-la, root weights of a wta/wsta/wuta, or index set
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