191 research outputs found

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost

    ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data

    Get PDF
    Published online: 16 Dec 2017The Red List Categories and the accompanying five criteria developed by the International Union for Conservation of Nature (IUCN) provide an authoritative and comprehensive methodology to assess the conservation status of organisms. Red List criterion B, which principally uses distribution data, is the most widely used to assess conservation status, particularly of plant species. No software package has previously been available to perform large-scale multispecies calculations of the three main criterion B parameters [extent of occurrence (EOO), area of occupancy (AOO) and an estimate of the number of locations] and provide preliminary conservation assessments using an automated batch process. We developed ConR, a dedicated R package, as a rapid and efficient tool to conduct large numbers of preliminary assessments, thereby facilitating complete Red List assessment. ConR (1) calculates key geographic range parameters (AOO and EOO) and estimates the number of locations sensu IUCN needed for an assessment under criterion B; (2) uses this information in a batch process to generate preliminary assessments of multiple species; (3) summarize the parameters and preliminary assessments in a spreadsheet; and (4) provides a visualization of the results by generating maps suitable for the submission of full assessments to the IUCN Red List. ConR can be used for any living organism for which reliable georeferenced distribution data are available. As distributional data for taxa become increasingly available via large open access datasets, ConR provides a novel, timely tool to guide and accelerate the work of the conservation and taxonomic communities by enabling practitioners to conduct preliminary assessments simultaneously for hundreds or even thousands of species in an efficient and time-saving way

    Effect of intravenous clarithromycin in patients with sepsis, respiratory and multiple organ dysfunction syndrome: a randomized clinical trial.

    Get PDF
    Clarithromycin may act as immune-regulating treatment in sepsis and acute respiratory dysfunction syndrome. However, clinical evidence remains inconclusive. We aimed to evaluate whether clarithromycin improves 28-day mortality among patients with sepsis, respiratory and multiple organ dysfunction syndrome. We conducted a multicenter, randomized, clinical trial in patients with sepsis. Participants with ratio of partial oxygen pressure to fraction of inspired oxygen less than 200 and more than 3 SOFA points from systems other than the respiratory function were enrolled between December 2017 and September 2019. Patients were randomized to receive 1 gr of clarithromycin or placebo intravenously once daily for 4 consecutive days. The primary endpoint was 28-day all-cause mortality. Secondary outcomes were 90-day mortality; sepsis response (defined as at least 25% decrease in SOFA score by day 7); sepsis recurrence; and differences in peripheral blood cell populations and leukocyte transcriptomics. Fifty-five patients were allocated to each arm. By day 28, 27 (49.1%) patients in the clarithromycin and 25 (45.5%) in the placebo group died (risk difference 3.6% [95% confidence interval (CI) - 15.7 to 22.7]; P = 0.703, adjusted OR 1.03 [95%CI 0.35-3.06]; P = 0.959). There were no statistical differences in 90-day mortality and sepsis response. Clarithromycin was associated with lower incidence of sepsis recurrence (OR 0.21 [95%CI 0.06-0.68]; P = 0.012); significant increase in monocyte HLA-DR expression; expansion of non-classical monocytes; and upregulation of genes involved in cholesterol homeostasis. Serious and non-serious adverse events were equally distributed. Clarithromycin did not reduce mortality among patients with sepsis with respiratory and multiple organ dysfunction. Clarithromycin was associated with lower sepsis recurrence, possibly through a mechanism of immune restoration. Clinical trial registration clinicaltrials.gov identifier NCT03345992 registered 17 November 2017; EudraCT 2017-001056-55

    The commonness of rarity: Global and future distribution of rarity across land plants

    Get PDF
    A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change

    Descriptors of Posidonia oceanica meadows: Use and application

    Get PDF
    The conservation of the coastal marine environment requires the possession of information that enables the global quality of the environment to be evaluated reliably and relatively quickly. The use of biological indicators is often an appropriate method. Seagrasses in general, and Posidonia oceanica meadows in particular, are considered to be appropriate for biomonitoring because of their wide distribution, reasonable size, sedentary habit, easy collection and abundance and sensitivity to modifications of littoral zone. Reasoned management, on the scale of the whole Mediterranean basin, requires standardized methods of study, to be applied by both researchers and administrators, enabling comparable results to be obtained. This paper synthesises the existing methods applied to monitor P. oceanica meadows, identifies the most suitable techniques and suggests future research directions. From the results of a questionnaire, distributed to all the identified laboratories working on this topic, a list of the most commonly used descriptors was drawn up, together with the related research techniques (e.g. standardization, interest and limits, valuation of the results). It seems that the techniques used to study meadows are rather similar, but rarely identical, even though the various teams often refer to previously published works. This paper shows the interest of a practical guide that describes, in a standardized way, the most useful techniques enabling P. oceanica meadows to be used as an environmental descriptor. Indeed, it constitutes the first stage in the process. (c) 2005 Elsevier Ltd. All rights reserved.Peer reviewe
    corecore