128 research outputs found

    Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network

    Get PDF
    Contains fulltext : 149550.pdf (publisher's version ) (Open Access)The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation.13 p

    Shaping and reshaping the aesthetic brain: Emerging perspectives on the neurobiology of embodied aesthetics

    Get PDF
    Contains fulltext : 156837.pdf (publisher's version ) (Open Access)Less than two decades after its inception, the burgeoning field of neuroaesthetics continues to grow in interest and momentum. Despite the biological and social importance of the human body and the attention people pay to its appearance in daily life, only recently has neuroaesthetic inquiry turned its attention to questions concerning the aesthetic appraisal of the human body. We review evidence illustrating that the complexity of aesthetic experience is reflected by dynamic interplay between brain systems involved in reward, perceptual and motor processing, with a focus on aesthetic perception involving the human body. We then evaluate work demonstrating how these systems are modulated by beholders' expertise or familiarity. Finally, we discuss seminal studies revealing the plasticity of behavioural and neural responses to beauty after perceptual and motor training. This research highlights the rich potential for neuroaesthetic inquiry to extend beyond its typical realm of the fine arts to address important questions regarding the relationship between embodiment, aesthetics and performing arts. We conclude by considering some of the criticisms and limitations of neuroaesthetics, and highlight several outstanding issues for future inquiry.13 p

    Dynamic Modulation of the Action Observation Network by Movement Familiarity

    Get PDF
    Contains fulltext : 139821.pdf (publisher's version ) (Open Access)When watching another person's actions, a network of sensorimotor brain regions, collectively termed the action observation network (AON), is engaged. Previous research suggests that the AON is more responsive when watching familiar compared with unfamiliar actions. However, most research into AON function is premised on comparisons of AON engagement during different types of task using univariate, magnitude- based approaches. To better understand the relationship between action familiarity and AON engagement, here we examine how observed movement familiarity modulates AON activity in humans using dynamic causal modeling, a type of effective connectivity analysis. Twenty- one subjects underwent fMRI scanning while viewing whole- body dance movements that varied in terms of their familiarity. Participants' task was to either predict the next posture the dancer's body would assume or to respond to a nonaction- related attentional control question. To assess individuals' familiarity with each movement, participants rated each video on a measure of visual familiarity after being scanned. Parametric analyses showed more activity in left middle temporal gyrus, inferior parietal lobule, and inferior frontal gyrus as videos were rated as increasingly familiar. These clusters of activity formed the regions of interest for dynamic causal modeling analyses, which revealed attenuation of effective connectivity bidirectionally between parietal and temporalAONnodes when participants observed videos they rated as increasingly familiar. As such, the findings provide partial support for a predictive coding model of the AON, as well as illuminate how action familiarity manipulations can be used to explore simulation based accounts of action understanding.12 p

    Dance experience sculpts aesthetic perception and related brain circuits

    Get PDF
    Contains fulltext : 140255.pdf (publisher's version ) (Open Access)Previous research on aesthetic preferences demonstrates that people are more likely to judge a stimulus as pleasing if it is familiar. Although general familiarity and liking are related, it is less clear how motor familiarity, or embodiment, relates to a viewer's aesthetic appraisal. This study directly compared how learning to embody an action impacts the neural response when watching and aesthetically evaluating the same action. Twenty-two participants trained for 4 days on dance sequences. Each day they physically rehearsed one set of sequences, passively watched a second set, listened to the music of a third set, and a fourth set remained untrained. Functional MRI was obtained prior to and immediately following the training period, as were affective and physical ability ratings for each dance sequence. This approach enabled precise comparison of self-report methods of embodiment with nonbiased, empirical measures of action performance. Results suggest that after experience, participants most enjoy watching those dance sequences they danced or observed. Moreover, brain regions involved in mediating the aesthetic response shift from subcortical regions associated with dopaminergic reward processing to posterior temporal regions involved in processing multisensory integration, emotion, and biological motion

    TARJETA DE VISITA [Material gráfico]

    Get PDF
    EUROPACopia digital. Madrid : Ministerio de Educación, Cultura y Deporte, 201

    The shaping of social perception by stimulus and knowledge cues to human animacy

    Get PDF
    Contains fulltext : 151462.pdf (publisher's version ) (Closed access)Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self-other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design.12 p

    Population genomics approach identifies recent adaptation in invasive fire ants

    Get PDF
    Mental imagery of one's body moving through space is important for imagining changing visuospatial perspectives, as well as for determining how we might appear to other people. Previous neuroimaging research has implicated the temporoparietal junction (TPJ) in this process. It is unclear, however, how neural activity in the TPJ relates to the rotation perspectives from which mental spatial transformation (MST) of one's own body can take place, i.e. from an egocentric or an allocentric perspective. It is also unclear whether TPJ involvement in MST is self-specific or whether the TPJ may also be involved in MST of other human bodies. The aim of the current study was to disentangle neural processes involved in egocentric versus allocentric MSTs of human bodies representing self and other. We measured functional brain activity of healthy participants while they performed egocentric and allocentric MSTs in relation to whole-body photographs of themselves and a same-sex stranger. Findings indicated higher blood oxygen level-dependent (BOLD) response in bilateral TPJ during egocentric versus allocentric MST. Moreover, BOLD response in the TPJ during egocentric MST correlated positively with self-report scores indicating how awkward participants felt while viewing whole-body photos of themselves. These findings considerably advance our understanding of TPJ involvement in MST and its interplay with self-awareness

    Dynamical Structure Factor for the Alternating Heisenberg Chain: A Linked Cluster Calculation

    Full text link
    We develop a linked cluster method to calculate the spectral weights of many-particle excitations at zero temperature. The dynamical structure factor is expressed as a sum of exclusive structure factors, each representing contributions from a given set of excited states. A linked cluster technique to obtain high order series expansions for these quantities is discussed. We apply these methods to the alternating Heisenberg chain around the dimerized limit (λ=0\lambda=0), where complete wavevector and frequency dependent spectral weights for one and two-particle excitations (continuum and bound-states) are obtained. For small to moderate values of the inter-dimer coupling parameter λ\lambda, these lead to extremely accurate calculations of the dynamical structure factors. We also examine the variation of the relative spectral weights of one and two-particle states with bond alternation all the way up to the limit of the uniform chain (λ=1\lambda=1). In agreement with Schmidt and Uhrig, we find that the spectral weight is dominated by 2-triplet states even at λ=1\lambda=1, which implies that a description in terms of triplet-pair excitations remains a good quantitative description of the system even for the uniform chain.Comment: 26 pages, 17 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore